标签:leetcode
Question:
Given two sorted arrays A, B of size m and n respectively. Find the k-th smallest element in the union of A and B. You can assume that there are no duplicate elements.
http://leetcode.com/2011/01/find-k-th-smallest-element-in-union-of.html
A special case: Median of two sorted arrays
https://oj.leetcode.com/problems/median-of-two-sorted-arrays/
http://leetcode.com/2011/03/median-of-two-sorted-arrays.html
// Option A: Two pointers // public int kMin(int[] A, int[] B, int k) { int a = 0; // [0, A.length - 1] int b = 0; // [0, B.length - 1] int r = -1; for (int i = 0 ; i < k ; i ++) { int va = safeValue(A, a); int vb = safeValue(B, b); if (va < vb) { r = va; a ++; } else { r = vb; b ++; } } return r; } private int safeValue(int[] A, int i) { if (i < 0 || i >= A.length) return Integer.MIN_VALUE; return A[i]; }
A Binary Search solution:
// Given A[i] and B[j] // If B[j-1] < A[i] < B[j] // // A[i] must be the (i + j + 1)th min number // public int kMin(int[] A, int alow, int ahigh, int[] B, int blow, int bhigh, int k) { // Assumptions... int i = selectI(A, alow, ahigh, B, blow, bhigh, k); int j = (k - 1) - 1; int Ai_1 = i <= 0 ? Integer.MIN_VALUE : A[i - 1]; int Ai = i >= A.length ? Integer.MAX_VALUE : A[i]; int Bj_1 = j <= 0 ? Integer.MIN_VALUE : B[j - 1]; int Bj = j >= B.length ? Integer.MAX_VALUE : B[j]; if (Bj_1 < Ai && Ai < Bj) return Ai; if (Ai_1 < Bj && Bj < Ai) return Bj // Now, it must be // Ai < Bj_1 < Bj // or // Bj < Ai_1 < Ai if (Ai < Bj) // Target must be in [Ai+1, Ahigh] X [Blow, Bj-1] { return kMin(A, i + 1, ahigh, B, blow, j - 1, k); } else { return kMin(A, alow, i - 1, B, j + 1, bhigh, k); } } // A methods determine i for A[i] // j in B[j] would be (k - 1) - i // The max value of i is k - 1. private int selectI(int[] A, int alow, int ahigh, int[] B, int blow, int bhigh, int k) { // Just choosing the middle number in A. int i = alow + (ahigh - alow) / 2; i = Math.min(i, k - 1); return i; }
[LeetCode] Find the k-th Smallest Element in the Union of Two Sorted Arrays
标签:leetcode
原文地址:http://7371901.blog.51cto.com/7361901/1605493