码迷,mamicode.com
首页 > 其他好文 > 详细

求极限

时间:2015-01-19 12:34:56      阅读:176      评论:0      收藏:0      [点我收藏+]

标签:

求极限

$$\lim_{n\to \infty}\frac{n^{n+1}}{n!}\int_{0}^{a}(e^{-x}x)^{n}dx$$

解:作变量替换 $t=nx$

$$\frac{n^{n+1}}{n!}\int_{0}^{a}(e^{-x}x)^{n}dx=\frac{1}{\Gamma(n+1)}\int_{0}^{na}e^{-t}t^{n}dt$$

由$\Gamma$函数的收敛性知

$$\lim_{n\to \infty}\frac{n^{n+1}}{n!}\int_{0}^{a}(e^{-x}x)^{n}dx=1$$

求极限

标签:

原文地址:http://www.cnblogs.com/zhangwenbiao/p/4233367.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!