码迷,mamicode.com
首页 > 其他好文 > 详细

BING: Binarized Normed Gradients特征用于目标检测<阅读笔记1>

时间:2015-01-19 22:17:24      阅读:3570      评论:0      收藏:0      [点我收藏+]

标签:

作者观察到,一般的物体,当归一化到某一个小的尺度上时,目标都有一个很好的了轮廓共

性。也就是目标的边缘梯度比较明显,组合成为一个闭合的轮廓。这里指的目标是广义的,

可以是任何类别的物体。(论文结论成立的依据


技术分享图a.表示原图像,图b表示梯度图像,

然后作者缩放到了很多尺度,图c,是

将梯度图像缩放到8x8以后,正例和负

例显示的结果,图d是将64位向量作为

特征,使用线性SVM训练得到的一个权

重系数图。其中,图a中红色的框表示

目标,绿色的框表示非目标

 

 


特征提取BING

1. 使用1-D的模板[-1,0,+1]计算Gx和Gy方向的梯度

2. 梯度幅值采用

3. 梯度图可以表示成一个8bit的切片图,每个切片图中对应着0或1(这里作者认为轮

    廓都存在梯度较强的区域,因此,每个点取梯度幅值的前4位表示即可)

4. 然后对每个切片图,取梯度特征(8x8),最终会提取出四个切面特征,合并以后

    就是该区域的BING特征了。

PS. 关于第4步,作者在这里使用了一个加速处理,即每次计算下一个特征的时候,利用

      了上一个特征的值,只需要做一个[移位]和[或]运算即可。

技术分享假设把红框往上平移一行(也就是不包含绿框),

此时向量的值设为 ,那么红框位置的特征值可以

表示为,此时,这样的话,计算特征就不用重复

的循环了。

 

 


训练过程(这部分我还没有完全弄懂:有人懂的话记得告诉我哈,谢谢啦,我也会继续往下看的)

1. 首先,提取正负样本的BING特征,输入到Linear-SVM中训练得到一个分类器,将分类器归一化,作为级联分类器的第一级。

2. 然后,使用这个分类器去搜索训练样本所在的(大图-猜测可能使用图像放缩检测),这个时候可以得到很多目标框,采用NMS

    抑制一下,然后选择一个较小的框作为第二级的训练样本正例,使用这个分类器去搜索训练负例(大图)搜索困难样本(Bootstrap策略),

    生成第二级训练样本负例。

3. 然后,将第2步生成的正例和负例输入到Linear-SVM中训练得到一个分类器,作为级联分类器的第二级。

分类器归一化方法

技术分享是一向量权重(linear分类器模型),是归一化的维度(要将w归一化成几维的,

作者取值为2),这个理论是做投影,还木有看证明

 

 

 

 

[27] Efficient online structured output learning for keypoint-based object tracking.

  

 未完待续—by cvchina@163 dddz WDH 2015-01-19

BING: Binarized Normed Gradients特征用于目标检测<阅读笔记1>

标签:

原文地址:http://www.cnblogs.com/miracled/p/4234707.html

(5)
(3)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!