码迷,mamicode.com
首页 > 其他好文 > 详细

[Everyday Mathematic]20150212 求 $(\cos x+2)(\sin x+1)$ 的最大值

时间:2015-01-20 10:25:44      阅读:170      评论:0      收藏:0      [点我收藏+]

标签:

设 $$\bex t=\tan \frac{x}{2}, \eex$$ 则 $$\bex \cos x=\frac{1-t^2}{1+t^2},\quad \sin x=\frac{2t}{1+t^2}, \eex$$ 经过化简有 $$\bex (\cos x+2)(\sin x+1)=\frac{(t+1)^2(t^2+3)}{(t^2+1)^2}\equiv f(t). \eex$$ 求导有 $$\bex f‘(t)=-\frac{2(t+1)(t^3+t^2+5t-3)}{(t^2+1)^3}. \eex$$ 记 $$\bex g(t)=t^3+t^2+5t-3, \eex$$ 则 $$\bex g‘(t)=3t^2+2t+5=3\sex{t+\frac{1}{3}}^2+\frac{14}{3}>0. \eex$$ 因此, $g(t)$ 在 $\bbR$ 上仅有一个实根, 由三次方程求根公式可求得该根, 设为 $t_0$, 则由 $f‘‘(t_0)<0$ 知 $f$ 在 $t_0$ 处取得最大值 $$\bex f(t_0)=2+\frac{83}{4\sqrt[3]{4644+183\sqrt{183}}}+\frac{\sqrt[3]{4644+183\sqrt{183}}}{12}. \eex$$ 

[Everyday Mathematic]20150212 求 $(\cos x+2)(\sin x+1)$ 的最大值

标签:

原文地址:http://www.cnblogs.com/zhangzujin/p/4235196.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!