标签:
一、定义
Hash即“哈希”,是把任意长度的输入通过散列算法变换成固定长度的输出(该输出即散列值)。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。
关键字k:即输入值
散列函数H(key):为了完成转化的固定算法
散列表(也称哈希表):关键字经散列函数输出后的结果表
二、常用的hash函数
1. 直接寻址法:取关键字或关键字的某个线性函数值为散列地址。即H(key)=key或H(key) = a·key + b,其中a和b为常数(这种散列函数叫做自身函数)。若其中H(key)中已经有值了,就往下一个找,直到H(key)中没有值了,就放进去。
2. 数字分析法:分析一组数据,比如一组员工的出生年月日,这时我们发现出生年月日的前几位数字大体相同,这样的话,出现冲突的几率就会很大,但是我们发现年月日的后几位表示月份和具体日期的数字差别很大,如果用后面的数字来构成散列地址,则冲突的几率会明显降低。因此数字分析法就是找出数字的规律,尽可能利用这些数据来构造冲突几率较低的散列地址。
3. 平方取中法:取关键字平方后的中间几位作为散列地址。
4. 折叠法:将关键字分割成位数相同的几部分,最后一部分位数可以不同,然后取这几部分的叠加和(去除进位)作为散列地址。数位叠加可以有移位叠加和间界叠加两种方法。移位叠加是将分割后的每一部分的最低位对齐,然后相加;间界叠加是从一端向另一端沿分割界来回折叠,然后对齐相加。
5. 随机数法:选择一随机函数,取关键字的随机值作为散列地址,通常用于关键字长度不同的场合。
6. 除留余数法:取关键字被某个不大于散列表表长m的数p除后所得的余数为散列地址。即 H(key) = key MOD p,p<=m。不仅可以对关键字直接取模,也可在折叠、平方取中等运算之后取模。对p的选择很重要,一般取素数或m,若p选的不好,容易产生同义词
7.乘法取整法:f(x):=trunc((x/maxX)*maxlongit) mod maxM,主要用于实数。
8.MD4:它适用在32位字长的处理器上用高速软件实现——它是基于 32位操作数的位操作来实现的。
9.MD5:MD5比MD4来得复杂,并且速度较之要慢一点,但更安全,在抗分析和抗差分方面表现更好。
10.SHA-1及其他
三、处理冲突的方法
1.开放寻址法;Hi=(H(key) + di) MOD m,i=1,2,…,k(k<=m-1),其中H(key)为散列函数,m为散列表长,di为增量序列,可有下列三种取法:
1). di=1,2,3,…,m-1,称线性探测再散列;
2). di=1^2,(-1)^2,2^2,(-2)^2,(3)^2,…,±(k)^2,(k<=m/2)称二次探测再散列;
3). di=伪随机数序列,称伪随机探测再散列。
2. 再散列法:Hi=RHi(key),i=1,2,…,k RHi均是不同的散列函数,即在同义词产生地址冲突时计算另一个散列函数地址,直到冲突不再发生,这种方法不易产生“聚集”,但增加了计算时间。
3. 链地址法(拉链法)
4. 建立一个公共溢出区
Hash深入学习
标签:
原文地址:http://blog.csdn.net/u010515761/article/details/42917589