码迷,mamicode.com
首页 > 其他好文 > 详细

机器学习基础-Logistic回归2

时间:2015-01-20 20:05:00      阅读:265      评论:0      收藏:0      [点我收藏+]

标签:

随机梯度上升法--一次仅用一个样本点来更新回归系数(因为可以在新样本到来时对分类器进行增量式更新,因而属于在线学习算法)

 梯度上升法在每次更新回归系统时都需要遍历整个数据集,该方法在处理100个左右的数据集时尚可,但如果有数十亿样本和成千上万的特征,那么该方法的计算复杂度太高了。

随机梯度上升算法伪代码:

所有回归系数初始化为1

对数据集中每个样本

            计算该样本的梯度

            使用alpha*gradient更新回归系数值

返回回归系数值

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)   #initialize to all ones
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

回归系数经过大量迭代才能达到稳定值,并且仍然有局部波动的现象。

对于随机梯度算法中存在的问题,可以通过改进的随机梯度上升算法来解决。

def stocGradAscent1(dataMatrix, classLabels, numIter=150):
    m,n = shape(dataMatrix)
    weights = ones(n)   #initialize to all ones
    for j in range(numIter):
        dataIndex = range(m)
        for i in range(m):
            alpha = 4/(1.0+j+i)+0.0001    #apha decreases with iteration, does not 
            randIndex = int(random.uniform(0,len(dataIndex)))#go to 0 because of the constant
            index=dataIndex[randIndex]
            h = sigmoid(sum(dataMatrix[index]*weights))
            error = classLabels[index] - h
            weights = weights + alpha * error * dataMatrix[index]
            del(dataIndex[randIndex])
    return weights

改进:

1.alpha在每次迭代的时候都会调整,这会缓解数据的波动或者高频波动。虽然alpha会随着迭代次数不断减小,但永远不会减到0,保证了新数据在多次迭代之后仍然具有一定的影响。

2.通过随机选取样本来更新回归系数。这种方法将减少周期性的波动。

机器学习基础-Logistic回归2

标签:

原文地址:http://www.cnblogs.com/ryuham/p/4236065.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!