码迷,mamicode.com
首页 > 其他好文 > 详细

动态时间规整DTW

时间:2014-05-28 01:47:15      阅读:402      评论:0      收藏:0      [点我收藏+]

标签:style   c   blog   http   a   color   

 在日常的生活中我们最经常使用的距离毫无疑问应该是欧式距离,但是对于一些特殊情况,欧氏距离存在着其很明显的缺陷,比如说时间序列,举个比较简单的例子,序列A:1,1,1,10,2,3,序列B:1,1,1,2,10,3,如果用欧氏距离,也就是distance[i][j]=(b[j]-a[i])*(b[j]-a[i])来计算的话,总的距离和应该是128,应该说这个距离是非常大的,而实际上这个序列的图像是十分相似的,这种情况下就有人开始考虑寻找新的时间序列距离的计算方法,然后提出了DTW算法,这种方法在语音识别,机器学习方便有着很重要的作用。

这个算法是基于动态规划(DP)的思想,解决了发音长短不一的模板匹配问题,简单来说,就是通过构建一个邻接矩阵,寻找最短路径和

还以上面的2个序列作为例子,A中的10和B中的2对应以及A中的2和B中的10对应的时候,distance[3]以及distance[4]肯定是非常大的,这就直接导致了最后距离和的膨胀,这种时候,我们需要来调整下时间序列,如果我们让A中的10和B中的10 对应,A中的1和B中的2对应,那么最后的距离和就将大大缩短,这种方式可以看做是一种时间扭曲,看到这里的时候,我相信应该会有人提出来,为什么不能使用A中的2与B中的2对应的问题,那样的话距离和肯定是0了啊,距离应该是最小的吧,但这种情况是不允许的,因为A中的10是发生在2的前面,而B中的2则发生在10的前面,如果对应方式交叉的话会导致时间上的混乱,不符合因果关系。

接下来,以output[6][6](所有的记录下标从1开始,开始的时候全部置0)记录A,B之间的DTW距离,简单的介绍一下具体的算法,这个算法其实就是一个简单的DP,状态转移公式是output[i][j]=Min(Min(output[i-1][j],output[i][j-1]),output[i-1][j-1])+distance[i][j];最后得到的output[5][5]就是我们所需要的DTW距离.



动态时间规整DTW是一个典型的优化问题,它用满足一定条件的的时间规整函数W(n)描述输入模板和参考模板的时间对应关系,求解两模板匹配时累计距离最小所对应的规整函数。

DTW ( Dynamic Time Warping ),即「动态时间扭曲」或是「动态时间规整」。这是一套根基于「动态规划」(Dynamic Programming,简称DP)的方法,可以有效地将搜寻比对的时间大幅降低。
DTW 的目标就是要找出两个向量之间的最短距离。一般而言,对于两个 n 维空间中的向量 x 和 y,它们之间的距离可以定义为两点之间的直线距离,称为尤拉距离(Euclidean Distance)。
dist(x, y) = |x – y| ,
但是如果向量的长度不同,那它们之间的距离,就无法使用上述的数学式來计算。一般而言,假設这两个向量的元素位置都是代表时间,由于我们必須容忍在时间轴的偏差,因此我们並不知道两个向量的元素对应关系,因此我们必須靠着一套有效的运算方法,才可以找到最佳的对应关系。



动态规划算法总体思想
动态规划算法基本思想是将待求解问题分解成若干个子问题
但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。求解时,有些子问题被重复计算了许多次。
如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。


动态规划基本步骤
找出最优解的性质,并刻划其结构特征。
递归地定义最优值。
以自底向上的方式计算出最优值。
根据计算最优值时得到的信息,构造最优解




 
这个例子中假设标准模板R为字母ABCDEF(6个),测试模板T为1234(4个)。R和T中各元素之间的距离已经给出。如下:

bubuko.com,布布扣

 

     既然是模板匹配,所以各分量的先后匹配顺序已经确定了,虽然不是一一对应的。现在题目的目的是要计算出测试模板T和标准模板R之间的距离。因为2个模板的长度不同,所以其对应匹配的关系有很多种,我们需要找出其中距离最短的那条匹配路径。现假设题目满足如下的约束:当从一个方格((i-1,j-1)或者(i-1,j)或者(i,j-1))中到下一个方格(i,j),如果是横着或者竖着的话其距离为d(i,j),如果是斜着对角线过来的则是2d(i,j).其约束条件如下图像所示:

bubuko.com,布布扣

 

     其中g(i,j)表示2个模板都从起始分量逐次匹配,已经到了M中的i分量和T中的j分量,并且匹配到此步是2个模板之间的距离。并且都是在前一次匹配的结果上加d(i,j)或者2d(i,j),然后取最小值。

     所以我们将所有的匹配步骤标注后如下:

bubuko.com,布布扣

     怎么得来的呢?比如说g(1,1)=4, 当然前提都假设是g(0,0)=0,就是说g(1,1)=g(0,0)+2d(1,1)=0+2*2=4.

     g(2,2)=9是一样的道理。首先如果从g(1,2)来算的话是g(2,2)=g(1,2)+d(2,2)=5+4=9,因为是竖着上去的。

     如果从g(2,1)来算的话是g(2,2)=g(2,1)+d(2,2)=7+4=11,因为是横着往右走的。

     如果从g(1,1)来算的话,g(2,2)=g(1,1)+2*d(2,2)=4+2*4=12.因为是斜着过去的。

     综上所述,取最小值为9. 所有g(2,2)=9.

     当然在这之前要计算出g(1,1),g(2,1),g(1,2).因此计算g(I,j)也是有一定顺序的。

其基本顺序可以体现在如下:

bubuko.com,布布扣

 

     计算了第一排,其中每一个红色的箭头表示最小值来源的那个方向。当计算了第二排后的结果如下:

bubuko.com,布布扣

 

     最后都算完了的结果如下:

bubuko.com,布布扣

     到此为止,我们已经得到了答案,即2个模板直接的距离为26. 我们还可以通过回溯找到最短距离的路径,通过箭头方向反推回去。如下所示:

bubuko.com,布布扣





动态时间规整DTW,布布扣,bubuko.com

动态时间规整DTW

标签:style   c   blog   http   a   color   

原文地址:http://www.cnblogs.com/sprint1989/p/3753772.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!