题目地址:POJ 1845
转载自:http://blog.csdn.net/lyy289065406/article/details/6648539
大致题意:
求A^B的所有约数(即因子)之和,并对其取模 9901再输出。
解题思路:
要求有较强 数学思维 的题
应用定理主要有三个:
要求有较强 数学思维 的题
应用定理主要有三个:
(1) 整数的唯一分解定理:
任意正整数都有且只有一种方式写出其素因子的乘积表达式。
A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 其中pi均为素数
(2) 约数和公式:
对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)
有A的所有因子之和为
S = (1+p1+p1^2+p1^3+...p1^k1) * (1+p2+p2^2+p2^3+….p2^k2) * (1+p3+ p3^3+…+ p3^k3) * .... * (1+pn+pn^2+pn^3+...pn^kn)
(3) 同余模公式:
(a+b)%m=(a%m+b%m)%m
(a*b)%m=(a%m*b%m)%m
有了上面的数学基础,那么本题解法就很简单了:
1: 对A进行素因子分解
分解A的方法:
A首先对第一个素数2不断取模,A%2==0时 ,记录2出现的次数+1,A/=2;
当A%2!=0时,则A对下一个连续素数3不断取模...
以此类推,直到A==1为止。
注意特殊判定,当A本身就是素数时,无法分解,它自己就是其本身的素数分解式。
最后得到A = p1^k1 * p2^k2 * p3^k3 *...* pn^kn.
故 A^B = p1^(k1*B) * p2^(k2*B) *...* pn^(kn*B);
2:A^B的所有约数之和为:
sum = [1+p1+p1^2+...+p1^(a1*B)] * [1+p2+p2^2+...+p2^(a2*B)] *...* [1+pn+pn^2+...+pn^(an*B)].
3: 用递归二分求等比数列1+pi+pi^2+pi^3+...+pi^n:
(1)若n为奇数,一共有偶数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2) * (1+p^(n/2+1))
= (1 + p + p^2 +...+ p^(n/2)) * (1 + p^(n/2+1))
上式红色加粗的前半部分恰好就是原式的一半,那么只需要不断递归二分求和就可以了,后半部分为幂次式,将在下面第4点讲述计算方法。
(2)若n为偶数,一共有奇数项,则:
1 + p + p^2 + p^3 +...+ p^n
= (1+p^(n/2+1)) + p * (1+p^(n/2+1)) +...+ p^(n/2-1) * (1+p^(n/2+1)) + p^(n/2)
= (1 + p + p^2 +...+ p^(n/2-1)) * (1+p^(n/2+1)) + p^(n/2);
上式红色加粗的前半部分恰好就是原式的一半,依然递归求解
4:反复平方法计算幂次式p^n
这是本题关键所在,求n次幂方法的好坏,决定了本题是否TLE。
以p=2,n=8为例
常规是通过连乘法求幂,即2^8=2*2*2*2*2*2*2*2
这样做的要做8次乘法
而反复平方法则不同,
定义幂sq=1,再检查n是否大于0,
While,循环过程若发现n为奇数,则把此时的p值乘到sq
{
n=8>0 ,把p自乘一次, p=p*p=4 ,n取半 n=4
n=4>0 ,再把p自乘一次, p=p*p=16 ,n取半 n=2
n=2>0 ,再把p自乘一次, p=p*p=256 ,n取半 n=1,sq=sq*p
n=1>0 ,再把p自乘一次, p=p*p=256^2 ,n取半 n=0,弹出循环
}
则sq=256就是所求,显然反复平方法只做了3次乘法
鄙人代码如下:
#include <iostream> #include <string.h> #include <math.h> #include <queue> #include <algorithm> #include <stdlib.h> #include <map> #include <set> #include <stdio.h> using namespace std; #define LL __int64 #define pi acos(-1.0) const int mod=9901; const int INF=0x3f3f3f3f; const double eqs=1e-8; LL p[1000], k[1000], cnt; LL Pow(LL n, LL m) { LL ans=1; while(m>0) { if(m&1) ans=ans*n%mod; m>>= 1; n=n*n%mod; } return ans; } void split(LL a) { cnt=0; memset(k,0,sizeof(k)); for(int i=2; i*i<=a; i++) { if(a%i==0) { p[cnt]=i; while(a%i==0) { k[cnt]++; a/=i; } cnt++; } } if(a>1) { p[cnt]=a; k[cnt]=1; cnt++; } } LL sum(LL pp, LL kk) { LL ans=0; if(!kk) return 1; if(kk==1) return pp; if(kk&1){ ans=Pow(pp,kk); } ans+=(1+Pow(pp,kk>>1))*sum(pp,kk>>1)%mod; return ans%mod; } int main() { LL a, b; LL ans; while(scanf("%I64d%I64d",&a,&b)!=EOF) { if(!a){ printf("0\n"); continue ; } if(!b){ printf("1\n"); continue ; } split(a); ans=1; for(int i=0; i<cnt; i++) { ans*=(1+sum(p[i],k[i]*b))%mod; ans%=mod; } printf("%I64d\n",ans); } return 0; }
POJ 1845 Sumdiv (快速分解因式+快速幂取模)
原文地址:http://blog.csdn.net/scf0920/article/details/43055537