码迷,mamicode.com
首页 > 其他好文 > 详细

[再寄小读者之数学篇](2014-05-27 二阶矩阵的不等式)

时间:2014-05-29 01:55:01      阅读:197      评论:0      收藏:0      [点我收藏+]

标签:style   c   class   ext   a   color   

(来自质数) 设A,Bbubuko.com,布布扣bubuko.com,布布扣 都是实数域上的两个二阶方阵, 且 AB=BAbubuko.com,布布扣bubuko.com,布布扣 .  证明:对于任意实数 x,y,zbubuko.com,布布扣bubuko.com,布布扣 ,有

4xzdet(xAbubuko.com,布布扣2bubuko.com,布布扣+yAB+zBbubuko.com,布布扣2bubuko.com,布布扣)(4xz?ybubuko.com,布布扣2bubuko.com,布布扣)(xdet(A)?zdet(B))bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣

证明: (来自 torsor) 因为 A,Bbubuko.com,布布扣bubuko.com,布布扣 可交换, 所以在复数域上它们可以同时上角化. 这一结论可以参考复旦高代教材第六章总复习题18, 注意 A,Bbubuko.com,布布扣bubuko.com,布布扣 的特征值一般是复数, 所以这一结论一般来说只能在复数域上成立. 设 Pbubuko.com,布布扣bubuko.com,布布扣 为二阶可逆复方阵, 使得

Pbubuko.com,布布扣?1bubuko.com,布布扣AP=[λbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣λbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣],Pbubuko.com,布布扣?1bubuko.com,布布扣BP=[μbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣μbubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣].??(1)bubuko.com,布布扣bubuko.com,布布扣
在要证明不等式的左边左乘 |Pbubuko.com,布布扣?1bubuko.com,布布扣|bubuko.com,布布扣bubuko.com,布布扣 , 右乘 |P|bubuko.com,布布扣bubuko.com,布布扣 , 利用 (1) 式可将要证的不等式化为以下不等式:
4xz(λbubuko.com,布布扣2bubuko.com,布布扣1bubuko.com,布布扣x+λbubuko.com,布布扣1bubuko.com,布布扣μbubuko.com,布布扣1bubuko.com,布布扣y+μbubuko.com,布布扣2bubuko.com,布布扣1bubuko.com,布布扣z)(λbubuko.com,布布扣2bubuko.com,布布扣2bubuko.com,布布扣x+λbubuko.com,布布扣2bubuko.com,布布扣μbubuko.com,布布扣2bubuko.com,布布扣y+μbubuko.com,布布扣2bubuko.com,布布扣2bubuko.com,布布扣z)(4xz?ybubuko.com,布布扣2bubuko.com,布布扣)(λbubuko.com,布布扣1bubuko.com,布布扣λbubuko.com,布布扣2bubuko.com,布布扣x?μbubuko.com,布布扣1bubuko.com,布布扣μbubuko.com,布布扣2bubuko.com,布布扣z)bubuko.com,布布扣2bubuko.com,布布扣.??(2)bubuko.com,布布扣bubuko.com,布布扣
将 (2) 式的左边减去右边, 并进行化简可得:
LHS?RHS=(2xz(λbubuko.com,布布扣1bubuko.com,布布扣μbubuko.com,布布扣2bubuko.com,布布扣+λbubuko.com,布布扣2bubuko.com,布布扣μbubuko.com,布布扣1bubuko.com,布布扣)+y(|A|x+|B|z))bubuko.com,布布扣2bubuko.com,布布扣.??(3)bubuko.com,布布扣bubuko.com,布布扣
现在只要说明 λbubuko.com,布布扣1bubuko.com,布布扣μbubuko.com,布布扣2bubuko.com,布布扣+λbubuko.com,布布扣2bubuko.com,布布扣μbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 是实数, 即可得到 (3) 式对任意的实数 x,y,zbubuko.com,布布扣bubuko.com,布布扣 都是非负的, 从而证明了不等式 (2) 以及原来的不等式. 注意到
tr(AB)=tr(Pbubuko.com,布布扣?1bubuko.com,布布扣ABP)=tr((Pbubuko.com,布布扣?1bubuko.com,布布扣AP)(Pbubuko.com,布布扣?1bubuko.com,布布扣BP))=λbubuko.com,布布扣1bubuko.com,布布扣μbubuko.com,布布扣1bubuko.com,布布扣+λbubuko.com,布布扣2bubuko.com,布布扣μbubuko.com,布布扣2bubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣
tr(A)=λbubuko.com,布布扣1bubuko.com,布布扣+λbubuko.com,布布扣2bubuko.com,布布扣,tr(B)=μbubuko.com,布布扣1bubuko.com,布布扣+μbubuko.com,布布扣2bubuko.com,布布扣,bubuko.com,布布扣bubuko.com,布布扣
因此 λbubuko.com,布布扣1bubuko.com,布布扣μbubuko.com,布布扣2bubuko.com,布布扣+λbubuko.com,布布扣2bubuko.com,布布扣μbubuko.com,布布扣1bubuko.com,布布扣=tr(A)tr(B)?tr(AB)bubuko.com,布布扣bubuko.com,布布扣 是实数. 

[再寄小读者之数学篇](2014-05-27 二阶矩阵的不等式),布布扣,bubuko.com

[再寄小读者之数学篇](2014-05-27 二阶矩阵的不等式)

标签:style   c   class   ext   a   color   

原文地址:http://www.cnblogs.com/zhangzujin/p/3754315.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!