码迷,mamicode.com
首页 > 其他好文 > 详细

Codeforces Round #286 (Div. 1) 解题报告

时间:2015-01-24 15:48:14      阅读:148      评论:0      收藏:0      [点我收藏+]

标签:

A.Mr. Kitayuta, the Treasure Hunter

     很显然的一个DP,30000的数据导致使用map+set会超时。题解给了一个非常实用的做法,由于每个点有不超过250种状态,并且这些状态都是以包含d连续的一段数字,那么可以以对d的偏移量作为状态。这算是很常见的一个优化了。

技术分享
#include<bits/stdc++.h>
using namespace std;
const int INF = 30009;
int f[INF][500],a[INF];
int n, d, ans = 1, x;
int main() {
    scanf ("%d %d", &n, &d);
    for (int i = 1; i <= n; i++) {
        scanf ("%d", &x);
        a[x]++;
    }
    f[d][250] = a[d] + 1;
    for (int i = d; i <= x; i++)
        for (int j = 0; j < 500; j++) {
            if (f[i][j] == 0) continue;
            int k = j - 250 + d, val = f[i][j];
            ans = max (ans, val);
            for (int t = max (1, k - 1); t <= k + 1; t++)
                if (i + t <= x)
                    f[i + t][t - d + 250] = max (f[i + t][t - d + 250], val + a[i + t]);
        }
    printf ("%d\n", ans - 1);
}
View Code

 

 

B.Mr. Kitayuta‘s Technology

     [Problem] Given an integer n and m pairs of integers (ai, bi) (1 ≤ ai, bi ≤ n), find the minimum number of edges in a directed graph that satisfies the following condition:

  • For each i, there exists a path from vertex ai to vertex bi.

    对于一个n个点的强连通图最少需要n条边,而非强连通的n个有边连接的点最少需要n-1条边。那么只要判断连通起来的k个点组成的块是不是有环,如果有环需要k条边,无环需要k-1条边。在连完一个连通的块后将其合并看成一个点。直到所有点都遍历过。

技术分享
#include<bits/stdc++.h>
using namespace std;
const int INF = 120009;
struct Edge {
    int v, next;
} edge[INF];
int head[INF], ncnt ;
int f[INF], vis[INF], cycle[INF], siz[INF];
int n, m, ans;
inline void adde (int u, int v) {
    edge[++ncnt].v = v, edge[ncnt].next = head[u];
    head[u] = ncnt;
}
inline int find (int x) {
    if (f[x] == x) return x;
    return f[x] = find (f[x]);
}
inline void uin (int x, int y)
{
    siz[find (x)] += siz[find (y)];
    f[find (y)] = find (x);
}
inline bool dfs (int u) {
    vis[u] = 1;
    for (int i = head[u]; i; i = edge[i].next) {
        int v = edge[i].v;
        if (!vis[v])     dfs (v);
        if (vis[v] == 1) cycle[find (u)] = 1;
    }
    vis[u] = 2;
}
int main() {
    scanf ("%d %d", &n, &m);
    for (int i = 1; i <= n; i++) f[i] = i, siz[i] = 1;
    for (int i = 1, x, y; i <= m; i++) {
        scanf ("%d %d", &x, &y);
        adde (x, y);
        if (find (x) != find (y) ) uin (x, y);
    }
    for (int i = 1; i <= n; i++)
        if (!vis[i]) dfs (i);
    for (int i = 1; i <= n; i++) {
        if (find (i) == i)
            ans += siz[i] - 1;
        ans += cycle[i];
    }
    printf ("%d\n", ans);
}
View Code

 

D.Mr. Kitayuta‘s Colorful Graph

  题意:一个n个点m条边的无向图中所有的边都有一个颜色,有q个询问,对每个询问(u,v)输出从u到v的纯色路径条数。(n,m,q<1e5)

 

  首先应该先把所有相同颜色边连接的块做一次并查集,然后对所有询问(a,b)对a,b中有着较少的度的点的颜色查找b是否与a在一个集合。

  unordered_map能够在让查找b的时间降到O(1)

 

技术分享
#include<bits/stdc++.h>
using namespace std;
const int INF = 100009;

unordered_map<int, int> f[INF], old[INF];

int n, m, q;
inline int find (int x, int c) {
    if (f[x][c] < 0) return x;
    return f[x][c] = find (f[x][c], c);
}
inline void merge (int x, int y, int c) {
    if (f[x].find (c) == f[x].end() ) f[x][c] = -1;
    if (f[y].find (c) == f[y].end() ) f[y][c] = -1;
    x = find (x, c), y = find (y, c);
    if (x == y) return;
    f[y][c] += f[x][c];
    f[x][c] = y;
}
int main() {
    scanf ("%d %d", &n, &m);
    for (int i = 1, x, y, c; i <= m; i++) {
        scanf ("%d %d %d", &x, &y, &c);
        merge (x, y, c);
    }
    scanf ("%d", &q);
    int a, b;
    while (q--) {
        scanf ("%d %d", &a, &b);
        if (f[a].size() > f[b].size() ) swap (a, b);
        if (old[a].find (b) == old[a].end() ) {
            int ans = 0;
            for (auto &c : f[a])
                if (f[b].find (c.first) != f[b].end() && find (a, c.first) == find (b, c.first) )
                    ans++;
            old[a][b] = ans;
        }
        printf ("%d\n", old[a][b]);
    }
}
View Code

 

Codeforces Round #286 (Div. 1) 解题报告

标签:

原文地址:http://www.cnblogs.com/keam37/p/4237581.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!