标签:非极大抑制 non-maximum suppress rcnn spp
最近在看RCNN和微软的SPP-net,其中涉及到Non-Maximum Suppression,论文中没具体展开,我就研究下了代码,这里做一个简单的总结,听这个名字感觉是一个很高深的算法,其实很简单,就是把找出score比较region,其中需要考虑不同region的一个重叠问题。
假设从一个图像中得到了2000region proposals,通过在RCNN和SPP-net之后我们会得到2000*4096的一个特征矩阵,然后通过N的SVM来判断每一个region属于N的类的scores。其中,SVM的权重矩阵大小为4096*N,最后得到2000*N的一个score矩阵(其中,N为类别的数量)。
Non-Maximum Suppression就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的bounding box。首先,NMS计算出每一个bounding box的面积,然后根据score进行排序,把score最大的bounding box作为队列中。接下来,计算其余bounding box与当前最大score与box的IoU,去除IoU大于设定的阈值的bounding box。然后重复上面的过程,直至候选bounding box为空。最终,检测了bounding box的过程中有两个阈值,一个就是IoU,另一个是在过程之后,从候选的bounding box中剔除score小于阈值的bounding box。需要注意的是:Non-Maximum Suppression一次处理一个类别,如果有N个类别,Non-Maximum Suppression就需要执行N次。
function pick = nms(boxes, overlap) % top = nms(boxes, overlap) % Non-maximum suppression. (FAST VERSION) % Greedily select high-scoring detections and skip detections % that are significantly covered by a previously selected % detection. % % NOTE: This is adapted from Pedro Felzenszwalb's version (nms.m), % but an inner loop has been eliminated to significantly speed it % up in the case of a large number of boxes % Copyright (C) 2011-12 by Tomasz Malisiewicz % All rights reserved. % % This file is part of the Exemplar-SVM library and is made % available under the terms of the MIT license (see COPYING file). % Project homepage: https://github.com/quantombone/exemplarsvm if isempty(boxes) pick = []; return; end x1 = boxes(:,1); y1 = boxes(:,2); x2 = boxes(:,3); y2 = boxes(:,4); s = boxes(:,end); area = (x2-x1+1) .* (y2-y1+1); %计算出每一个bounding box的面积 [vals, I] = sort(s); %根据score递增排序 pick = s*0; counter = 1; while ~isempty(I) last = length(I); i = I(last); pick(counter) = i; %选择score最大bounding box加入到候选队列 counter = counter + 1; xx1 = max(x1(i), x1(I(1:last-1))); yy1 = max(y1(i), y1(I(1:last-1))); xx2 = min(x2(i), x2(I(1:last-1))); yy2 = min(y2(i), y2(I(1:last-1))); w = max(0.0, xx2-xx1+1); h = max(0.0, yy2-yy1+1); inter = w.*h; %计算出每一bounding box与当前score最大的box的交集面积 o = inter ./ (area(i) + area(I(1:last-1)) - inter); %IoU(intersection-over-union) I = I(find(o<=overlap)); %找出IoU小于overlap阈值的index end pick = pick(1:(counter-1));
非极大抑制(Non-Maximum Suppression)
标签:非极大抑制 non-maximum suppress rcnn spp
原文地址:http://blog.csdn.net/danieljianfeng/article/details/43084875