题目大意:给出一些数字,要求选出一些数字并保证所有数字和最大,要求这其中的数字任意两个至少满足一个条件,则不能同时被选:1.这两个数的平方和是完全平方数。2.gcd(a,b) = 1。
思路:我们可以将奇数和偶数分开来讨论,奇数不满足1,偶数不满足2,所以奇数和奇数,偶数和偶数不会互相影响。之后O(n^2)的讨论其他数字对,有影响就连边,流量正无穷,最后跑最小割最最大获利。
CODE:
#define _CRT_SECURE_NO_WARNINGS
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define MAX 3010
#define MAXE 2000000
#define INF 0x3f3f3f3f
#define S 0
#define T (MAX - 1)
#define EPS 1e-7
using namespace std;
struct MaxFlow{
int head[MAX],total;
int next[MAXE],aim[MAXE];
long long flow[MAXE];
int deep[MAX];
MaxFlow():total(1) {}
void Add(int x,int y,long long f) {
next[++total] = head[x];
aim[total] = y;
flow[total] = f;
head[x] = total;
}
void Insert(int x,int y,long long f) {
Add(x,y,f);
Add(y,x,0);
}
bool BFS() {
static queue<int> q;
while(!q.empty()) q.pop();
memset(deep,0,sizeof(deep));;
deep[S] = 1;
q.push(S);
while(!q.empty()) {
int x = q.front(); q.pop();
for(int i = head[x]; i; i = next[i])
if(flow[i] && !deep[aim[i]]) {
deep[aim[i]] = deep[x] + 1;
q.push(aim[i]);
if(aim[i] == T) return true;
}
}
return false;
}
long long Dinic(int x,long long f) {
if(x == T) return f;
long long temp = f;
for(int i = head[x]; i; i = next[i])
if(flow[i] && temp && deep[aim[i]] == deep[x] + 1) {
long long away = Dinic(aim[i],min(flow[i],temp));
if(!away) deep[aim[i]] = 0;
flow[i] -= away;
flow[i^1] += away;
temp -= away;
}
return f - temp;
}
}solver;
int cnt;
pair<int,int> odd[MAX],even[MAX];
int odds,evens;
int energy[MAX];
int gcd(int x,int y)
{
return (y ? gcd(y,x % y):x);
}
inline bool Judge(int x,int y)
{
long long aim = (long long)x * x + (long long)y * y;
if((long long)(sqrt(aim) + EPS) * (long long)(sqrt(aim) + EPS) == (long long)x * x + (long long)y * y) return true;
return false;
}
int main()
{
cin >> cnt;
long long ans = 0;
for(int x,i = 1; i <= cnt; ++i) {
scanf("%d",&x);
if(x&1) odd[++odds] = make_pair(x,i);
else even[++evens] = make_pair(x,i);
}
for(int i = 1; i <= cnt; ++i)
scanf("%d",&energy[i]),ans += energy[i];
for(int i = 1; i <= odds; ++i)
solver.Insert(S,i,energy[odd[i].second]);
for(int i = 1; i <= evens; ++i)
solver.Insert(odds + i,T,energy[even[i].second]);
for(int i = 1; i <= odds; ++i)
for(int j = 1; j <= evens; ++j)
if(gcd(odd[i].first,even[j].first) == 1 && Judge(odd[i].first,even[j].first))
solver.Insert(i,odds + j,INF);
long long max_flow = 0;
while(solver.BFS())
max_flow += solver.Dinic(S,INF);
cout << ans - max_flow << endl;
return 0;
}BZOJ 3275 Number && 3158 千钧一发 最小割
原文地址:http://blog.csdn.net/jiangyuze831/article/details/43086333