标签:
2008浙大研究生复试热身赛(2)——全真模拟
题目大意:给你N个点,M条双向边。再给你起点s和终点t,求点s到点t的最短路径。
思路:求一对顶点之间的最短路径。用Dijkstra算法来做。这道题需要注意的几点:
(1)注意重边情况;(2)注意s == t的情况,输出为0;(3)标记k的时候,初始化千万不
能标记成0~N-1。
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> using namespace std; const int MAXN = 220; const int INF = 10000000; int Map[MAXN][MAXN],Dist[MAXN],vis[MAXN]; void Dijkstra(int N,int s) { int Min; memset(vis,0,sizeof(vis)); for(int i = 0; i < N; ++i) Dist[i] = Map[s][i]; Dist[s] = 0; vis[s] = 1; for(int i = 0; i < N; ++i) { Min = INF; int k = -1; for(int j = 0; j < N; ++j) { if(!vis[j] && Dist[j] < Min) { Min = Dist[j]; k = j; } } if(k == -1) //标记k一定不要和编号相等 return; vis[k] = 1; for(int j = 0; j < N; ++j) { if(!vis[j] && Map[k][j]!=INF && Dist[j] > Dist[k] + Map[k][j]) { Dist[j] = Dist[k] + Map[k][j]; } } } } int main() { int N,M,u,v,w,s,t; while(~scanf("%d%d",&N,&M)) { for(int i = 0; i < N; ++i) for(int j = 0; j < N; ++j) Map[i][j] = INF; for(int i = 0; i < N; ++i) Dist[i] = INF; for(int i = 0; i < M; ++i) { scanf("%d%d%d",&u,&v,&w); if(w < Map[u][v]) Map[u][v] = Map[v][u] = w; } scanf("%d%d",&s,&t); Dijkstra(N,s); if(Dist[t] != INF) printf("%d\n",Dist[t]); else printf("-1\n"); } return 0; }
标签:
原文地址:http://blog.csdn.net/lianai911/article/details/43116023