码迷,mamicode.com
首页 > 其他好文 > 详细

Hadoop大数据零基础高端实战培训视频

时间:2015-01-26 12:00:17      阅读:229      评论:0      收藏:0      [点我收藏+]

标签:京东商城   阿里巴巴   hadoop   并行处理   

《Hadoop大数据零基础高端实战培训系列配文本挖掘项目(七大亮点、十大目标)》 
课程讲师:迪伦 
课程分类:大数据 
适合人群:初级 
课时数量: 300课时 
用到技术:部署Hadoop集群 
涉及项目:京东商城、百度、阿里巴巴 
咨询QQ:779591710 


下载地址: 
链接:http://pan.baidu.com/share/link?shareid=3299239734&uk=3289559542 
密码:8tkb 




第一阶段:Hadoop基础篇(50课时) - 千里之行,始于足下(赠送课程) 


课程一、基于Linux操作系统平台下的Java语言开发(20课时) 


本套课程主要介绍了Linux系统下的Java环境搭建及最基础的Java语法知识。学习Linux操作系统下Java语言开发的好处 好处一:不再束缚在Windows操作系统下,开阔眼界。 
好处二:熟练Linux操作系统的指令,走出“指指点点”的开发,成为真正的代码程序员。 
好处三:增加自己的竞争实力,为自己应聘时加上浓浓的一笔。 


第一讲 安装虚拟机以及Linux操作系统 
第二讲 Linux桌面系统 
第三讲 Linux文件和目录管理 
第四讲 VIM的使用(上) 
第五讲 VIM的使用(下) 
第六讲 Linux终端常用命令 
第七讲 Java开发环境的搭建 
第八讲 Java语言基础(上) 
第九讲 Java语言基础(下) 
第十讲 Java中IO详解(上) 
第十一讲 Java中IO详解(下) 
第十二讲 Java中容器详解(上) 
第十三讲 Java中容器详解(下) 
第十四讲 Java中Swing详解(上) 
第十五讲 Java中Swing详解(下) 
第十六讲 JSP开发环境的搭建 
第十七讲 JSP语法详解(上) 
第十八讲 JSP语法详解(下) 
第十九讲 开发用户登陆,用户注册系统 


课程二、零基础实战Mysql数据库应用开发(30课时) 
通过本课程的学习,用户可在最短的时间内掌握MySQL的安装配置与使用、MySQL DML特性的高级用法、MySQL常见内置函数的高级用法、MySQL中存储过程写法、视图、用户自定义函数、触发器等高级用法、MySQL中的事务功能。并了解图形化管理工具的使用、字符集及乱码处理、MySQL的数据备份与还原技术、MySQL的安全技术、MySQL的系统管理、MySQL集群的配置。 
第一部分:安装配置MySQL数据库(1课时) 
第二部分:图形化管理工具(2课时) 
第三部分:存储引擎及数据库基本操作(2课时) 
第四部分:字符集及乱码处理(2课时) 
第五部分:MySQL DML特性的高级用法(5课时) 
第六部分:MySQL内置函数(1课时) 
第七部分: MySQL 中的存储过程、触发器高级应用(2课时) 
第八部分:MySQL中视图与事务高级应用(3课时) 
第九部分:MySQL中索引的使用(1课时) 
第十部分:MySQL数据库的安全技术(1课时) 
第十一部分:系统管理(1课时) 
第十二部分:MySQL备份和还原操作(1课时) 
第十三部分:性能优化(1课时) 
第十四部分:集群的配置及应用(1课时) 




第二阶段:Hadoop全面深入篇(96课时) - 十年寒窗苦,成名天下知 


课程一、 Greenplum 分布式数据库开发入门到精通(41课时) 


Greenplum的架构采用了MPP(大规模并行处理)。在 MPP 系统中,每个 SMP 节点也可以运行自己的操作系统、数据库等,它的特点主要就是查询速度快,数据装载速度快,批量DML处理快。而且性能可以随着硬件的添加,呈线性增加,拥有非常良好的可扩展性。因此,它主要适用于面向分析的应用。比如构建企业级ODS/EDW,或者数据集市等等。本课程全面深入地介绍了Greenplum数据库,包括架构特性、部署、管理、开发和调优等,由浅入深,理论结合实战,让同学全面彻底掌握这把大数据利剑。 


一、 Greenplum架构 
什么是Greenplum 
Greenplum体系结构 
Greenplum高可用性架构 


二、安装Greenplum 
配置环境 
安装并初始化GPDB系统 
启停数据库 
配置GP系统 


三、分布式数据库存储 
数据是如何存储的 
分布策略 


四、 GBDB查询处理 
查询命令的执行 
SQL查询处理机制 
并行查询计划 
五、角色权限及客户端认证管理 
客户端认证 
管理用户和组 


六、客户端接口和程序 
pgAdmin III 
PSQL 


七、定义数据库对象 
创建并管理数据库 
创建并管理表空间 
创建并管理模式 
创建并管理表 
分区表 
数据分布与分区 
压缩存储与行列存储 
序列、索引与视图 


八、管理数据 
插入、更新、删除记录 
事务管理 
空间回收和统计 


九、查询数据 
定义查询 
使用函数和运算符 
查询分析 


十、工作负载及资源管理 
GP工作负载管理概述 
配置工作负载管理 
创建资源队列 
分配资源队列 
检查资源队列状态 


十一、装载和卸载数据 
GP装载命令概述 
装载数据到GP 
从GP卸载数据 
格式化数据文件 


十二、备份恢复 
串行备份和恢复 
并行恢复和恢复 
十三、性能调优 
如何进行调优 
常见的性能问题 


十四、GP系统配置参数 
关于GP的Master参数与本地化参数 
设置配置参数 
配置参数种类 


十五、开启高可用性 
GP高可用概述 
开启GP的Mirror 
获知Segment何时失败 
恢复失败的Segment 
恢复失败的Master 


十六、GP MapReduce 
MapReduce基础 
GP MapReduce编程 
MapReduce作业执行和故障诊断 


课程二、全面深入Greenplum Hadoop大数据分析平台(55课时) 


大量的半结构化和非结构化信息无法管理和存储,大数据增长速度惊人,每年以几何级数速度增长,需要有专业化的解决方案应对大数据挑战。EMC收购了Greenplum之后,推出的针对Hadoop的Greenplum的数据库软件。 
采用Greenplum HD技术管理半结构化和非结构化信息,整体TCO更低,除了进行有效存储和管理,可以通过MapReduce技术进行并行的分析和挖掘,把大量的数据存储变成有价值的数据资产。本课程深入阐述了Hadoop的架构原理,Hadoop整体技术架构,包括HBase、Hive、Pig、ZooKeeper、Chukwa等实战运用。另外还介绍了云计算的基础知识和Hadoop在云计算领域的运用,以及剖析了Hadoop在各个互联网巨头商业环境的运用。 


一、 Hadoop的起源和体系 
Hadoop思想起源:Google 
Hadoop子项目家族 
Hadoop的架构 


二、 Hadoop的安装与配置 
准备和配置环境 
三种运行模式 
完全分布式模式安装 


三、 HDFS-大数据存储 
HDFS概念与体系结构 
HDFS的可靠性 
HDFS文件操作 
HDFS API 


四、 关于MapReduce 
MapReduce编程模型 
MapReduce的集群行为 
MapReduce任务的优化 
MapReduce工作机制 
错误处理及作业调度机制 


五、 MapReduce应用开发 
Hadoop Eclipse插件开发 
数据筛选程序开发 
倒排索引程序开发 


六、 Hadoop监控与管理 
页面监控 
hadoop备份 


七、 HBase数据库 
Hbase体系结构 
HBase shell 
HBase API应用实例 
HBase场景应用 
HBase模式设计 


八、 Hive数据仓库 
Hive组件与体系架构 
Hive安装配置 
Hive的服务接口 
HiveQL常用操作 
Hive的优化 
Hive UDF编程 
Hive综合实战 


九、 Pig数据分析平台 
Pig框架 
Pig安装配置 
Pig的使用 
Pig的数据模型 
常用Pig Latin操作 
Pig UDF编程 
Pig数据分析实战 


十、ZooKeeper分布式服务框架 
ZooKeeper工作原理 
ooKeeper设计目标 
ZooKeeper的数据结构和组成 
ZooKeeper的安装配置 
ZooKeeper命令行工具 
ZooKeeper API 
ZooKeeper实战:Hadoop任务调度 


十一、 Chukwa集群监控系统 
Chukwa的组成 
Chukwa架构和设计 
Chukwa安装与配置 
常用Chukwa命令 
实现自定义数据处理 


十二、 Hadoop商业应用案例 
云计算概念和特征 
云计算服务模式和形态 
Hadoop在云计算的运用 
京东商城 
百度 
阿里巴巴 
腾讯 


十三、 Greenplum Hadoop集群 
集成架构的特征 
集成架构的优势 
配置gphdfs协议使用环境 
使用HDFS外部表 


第三阶段:Hadoop高阶应用篇(81课时) - 会当临绝顶,一览众山小 


课程一:Hadoop2.0/YARN深入浅出(21课时) 
详细讲解了Hadoop 2.0架构、部署以及YARN,并讲解了运行在YARN上主要的计算框架,包括Spark、Storm和Tez 


一、Hadoop 2.0(6课时) 
Hadoop 2.0产生背景 
Hadoop 2.0基本构成 


二、HDFS 2.0 
MapReduce 2.0 
Hadoop 2.0安装配置 
集群测试 


三、YARN资源管理系统(4课时) 
YARN产生背景 
YARN基本设计思想 
YARN基本架构 
YARN工作流程 
YARN通信协议 
YARN容错 
YARN资源调度机制 


四、YARN支持的计算框架(Storm,Tez,Spark)(11课时) 
以YARN为核心的生态系统 
Storm基本概念 
Storm流式计算框架 
基于YARN的Storm架构 
YARN-Storm部署 
Storm On YARN服务 
Apache Tez介绍 
Tez特点 
Tez数据处理引擎 
DAGAppMaster实现 
Tez优化机制 
Tez应用场景 
Tez部署 
什么是Spark 
Spark生态系统 
Spark的核心--RDD和Lineage 
RDD的存储、容错机制、内部设计及数据模型 
Spark调度框架 
Spark的分布式部署方式 
基于Mesos的Spark模式 
基于YARN的Spark模式 
Spark的独立模式部署 
Spark的YARN模式部署 


课程二:MapReduce/Hbase进阶提升(29课时) 
本部分内容主要针对MapReduce和HBase的高阶应用做深入的讲解和实战演练 


一、MapReduce多语言编程(5课时) 
MapReduce编程接口 
Java编程接口实例解析 
Hadoop Streaming实现方式 
Hadoop Streaming编程实战(C++,PHP,PYTHON) 
Hadoop Streaming原理剖析 
Hadoop Pipes的编程实例 
Hadoop Pipes的原理剖析 


二、MapReduce高阶实现(14课时) 
复杂的MapReduce应用 
K-means聚类、贝叶斯分类等 
工作流编程实例及原理剖析 
JobControl、ChainMapper/ChainReducer 
Hadoop工作流引擎 
常用MapReduce优化技巧 
配置多个reducer 
设置Stream的处理格式 
控制分片的大小 
避免分片 
输入格式:文本输入、多种类型输入 
输出控制:多个输出、延迟输出 
实战:数据分区 ? 
MapReduce高级特性 
计数器、内置计数器 
实例:用户自定义计数器 
MapReduce部分排序的实现 
实例:MapReduce全排序 
Terasort算法分析 
实例:MapReduce实现二次排序 
连接、Map端连接的实现 
实例:Reduce端连接 
连接类型、连接策略介绍 
重分区连接框架的实现 
复制连接框架的实现 
实例:半连接 
全局作业参数/数据文件传递 


三、HBase编程实践及案例分析(10课时) 
HBase基础精讲 
HBase Java编程实例 
HBase多语言编程 
Thrift安装、服务配置 
HBase C++编程实例 
HBase Python编程实例 
HBase MapReduce编程基础 
实战:HBase MapReduce编程 
Hbase案例:OpenTSDB的实现 
基于HBase的爬虫调度库 
基于HBase的爬虫索引库 
银行人民币查询系统 


课程三:Hadoop Sqoop/Flume/Avro实战(14课时) 
Hadoop Sqoop、Flume、Avro重要子项目的技术实战 


一、Sqoop(6课时) 
Sqoop产生背景、基本 
Sqoop1和Sqoop2架构及特点 
Sqoop1安装配置(版本1.4.4) 
Sqoop导入介绍 
实战:从mysql导入数据到HDFS 
实战:从mysql导入数据到Hive 
Sqoop导出介绍 
实战:将Hive数据导出到Mysql 
Sqoop与Hbase结合 
Sqoop作业操作 
Sqoop作业安全配置 
Sqoop2安装配置(版本1.99.3) 
Sqoop2使用综合实战 


二、Flume日志收集系统(7课时) 
Flume概念和特点 
Flume OG架构、组成、特点、容错机制设计 
日志收集系统综合比较 
Flume NG架构、核心概念 
Flume OG的安装 
Flume OG的配置(Web端、Flume shell) 
Flume NG的安装配置、测试 
Flume NG模块配置(Source、Channel、Sink) 


三、Avro数据序列化系统(1课时) 
Avro介绍 
Avro特性、主要作用 
RPC使用Avro 
Avro与其他序列化系统的区别 


课程四:深入浅出Hadoop Mahout数据挖掘实战(17课时) 
1、Mahout数据挖掘工具 
2、Hadoop实现推荐系统的综合实战,涉及到MapReduce、Pig和Mahout的综合实战 


一、Mahout数据挖掘工具(10课时) 
数据挖掘概念、系统组成 
数据挖掘常用方法及算法(回归分析、分类、聚类等) 
数据挖掘分析工具 
Mahout支持的算法 
Mahout起源和特点 
Mahout安装、配置及测试 
实战:Mahout K-means聚类分析 
Mahout实现Canopy算法 
Mahout实现分类算法 
实战:Mahout逻辑回归分类预测 
实战:Mahout朴素贝叶斯分类 
推荐系统的概念及分类 
协同过滤推荐算法概念、分类及应用 
实战:实现基于Mahout的电影推荐系统 


二、Hadoop综合实战-文本挖掘项目(7课时) 
文本挖掘的概念及应用场景 
项目背景 
项目流程 
中文分词技术 
庖丁分词器的使用 
MapReduce并行分词程序的设计与实现 
Pig划分数据集 
Mahout构建朴素贝叶斯文本分类器 
模型应用-计算用户偏好类别

Hadoop大数据零基础高端实战培训视频

标签:京东商城   阿里巴巴   hadoop   并行处理   

原文地址:http://blog.csdn.net/u014038124/article/details/43149737

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!