标签:
Description
"Good man never makes girls wait or breaks an appointment!" said the mandarin duck father. Softly touching his little ducks‘ head, he told them a story.
Input
The first line contains two integer numbers N and M (1 <= N <= 1000, 0 <= M <= 100000). Stations are numbered from 1 to N. Each of the following M lines contains three integer numbers A, B and T (1 <= A, B <= N, 1 <= T <= 100). It shows that there is a directed sideway from A-th station to B-th station with time T.
Output
A single line consisting of a single integer number: the length (time required) to welcome Princess Uyuw using the K-th shortest path. If K-th shortest path does not exist, you should output "-1" (without quotes) instead.
Sample Input
2 2
Sample Output
14
Source
POJ Monthly,Zeyuan Zhu
题目大意:公主要求王子通过第k短的路径去找她。给出了N个点,M条单向边的图。也给出了
起点s(王子所在的点)、终点t(公主所在的点)和k。问:K短路是多少。
思路:第一次做K短路的题目。用的A*+SPFA来做的。下边简单说下这个算法。
使用链式前向星存储图。安装下边步骤来做。
(1)将有向图的所有边正向、反向分别存入两个不同的边集(Edges,Edges1)中。用反向边集,
以所求终点t为源点,利用SPFA或Dijkstra求解出所有点到t的最短路径,用Dist[i]数组来表示点i
到点t的最短距离。
(2)建立一个优先队列,将源点s加入到队列中。
(3)从优先队列中取出最小的点p,如果点p == t,则计算t出队的次数。如果当前路径长度就是s
到t的第k短路长度,算法结束。否则遍历与p相连的所有的边,将扩展出的到p的邻接点信息加入
到优先队列中取。
注意:当s == t的时候,需要计算第k+1短路。因为s到t这条距离为0的路不能算是这k短路里边,
当s == t的时候,只需要将k = k+1后再求第k短路就可以了。这也是这道题的关键点之一。
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<queue> using namespace std; const int MAXN = 1100; const int MAXM = 110000; const int INF = 0xfffffff; struct EdgeNode { int to; int w; int next; }Edges[MAXM],Edges1[MAXM]; int Head[MAXN],Head1[MAXN]; struct Node { int to; int g,f; bool operator < (const Node &r) const { if(r.f == f) return r.g < g; return r.f < f; } }; int vis[MAXN],Queue[MAXN],outque[MAXN],Dist[MAXN]; int A_Star(int start,int end,int N,int k) { Node e,ne; int Cnt = 0; priority_queue<Node> que; if(start == end) k++; if(Dist[start] == INF) return -1; e.to = start; e.g = 0; e.f = e.g + Dist[e.to]; que.push(e); while( !que.empty() ) { e = que.top(); que.pop(); if(e.to == end) Cnt++; if(Cnt == k) return e.g; for(int i = Head[e.to]; i != -1; i = Edges[i].next) { ne.to = Edges[i].to; ne.g = e.g + Edges[i].w; ne.f = ne.g + Dist[ne.to]; que.push(ne); } } return -1; } bool SPFA(int s,int N) { for(int i = 0; i <= N; ++i) Dist[i] = INF; memset(vis,0,sizeof(vis)); memset(outque,0,sizeof(outque)); int iq = 0; Queue[iq++] = s; vis[s] = 1; Dist[s] = 0; int i = 0,top,k; while(i != iq) { top = Queue[i]; vis[top] = 0; outque[top]++; if(outque[top] > N) return false; k = Head1[top]; while(k >= 0) { if(Dist[Edges1[k].to] - Edges1[k].w > Dist[top]) { Dist[Edges1[k].to] = Dist[top] + Edges1[k].w; if( !vis[Edges1[k].to] ) { vis[Edges1[k].to] = 1; Queue[iq] = Edges1[k].to; iq++; } } k = Edges1[k].next; } i++; } return true; } int main() { int N,M,u,v,w,s,t,k; while(~scanf("%d%d",&N,&M)) { memset(Edges,0,sizeof(Edges)); memset(Edges1,0,sizeof(Edges1)); memset(Head,-1,sizeof(Head)); memset(Head1,-1,sizeof(Head1)); for(int i = 0; i < M; ++i) { scanf("%d%d%d",&u,&v,&w); Edges[i].to = v; Edges[i].w = w; Edges[i].next = Head[u]; Head[u] = i; Edges1[i].to = u; Edges1[i].w = w; Edges1[i].next = Head1[v]; Head1[v] = i; } scanf("%d%d%d",&s,&t,&k); SPFA(t,N); int kthlenth = A_Star(s,t,N,k); printf("%d\n",kthlenth); } return 0; }
POJ 2449 Remmarguts' Date【SPFA】【A*】
标签:
原文地址:http://blog.csdn.net/lianai911/article/details/43154177