标签:
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[ [0,0,0], [0,1,0], [0,0,0] ]
The total number of unique paths is 2
.
Note: m and n will be at most 100.
思路分析:这题是Unique Path问题的变形题目,现在网格中出现了用1标记的障碍物,有障碍物的网格不可以通过。同样可以用动态规划来解决。类似于Unique Path,设网格是m行n列,我们定义m*n的数组dp[][],其中dp[i][j]表示从起点(0,0)到达(i,j)的所有合法的路径数量,那么考虑到障碍物,我们有递推公式
dp[i,j] = dp[i-1,j] + dp[i,j-1]; if(i-1,j) and (i,j-1) are 0
dp[i,j] = dp[i-1,j] if(i,j-1) is 1
dp[i,j] = dp[i,j-1] if(i-1,j) is 1
dp[i,j] = 0 if both(i,j-1) and (i-1,j) are 1然后我们可以从左上向右下填表格计算。注意考虑几个corner case:1 当m或者n为1的时候,应该搜索网格是否包含1,如果有就没有合法路径,如果没有则存在一条合法路径; 2 当起点或者终点是1的时候,应该返回0.由于只需要使用相邻一行或者一列的计算结果,我们也可以定义一个一维数组来保存中间计算结果,进一步节省空间。
AC Code
public class Solution { public int uniquePathsWithObstacles(int[][] obstacleGrid) { int m = obstacleGrid.length; int n = obstacleGrid[0].length; if(m == 1 || n == 1){ boolean hasOne = false; for(int i = 0; i < m; i++){ for(int j = 0; j < n; j++){ if(obstacleGrid[i][j] == 1){ hasOne = true; break; } } } if(hasOne) return 0; else return 1; } int [][] dp = new int[m][n]; if(obstacleGrid[0][0] == 1 || obstacleGrid[m-1][n-1] == 1) return 0; dp[0][0] = 1; for(int i = 1; i < m; i++){ if(obstacleGrid[i][0] == 1){ dp[i][0] = 0; } else { dp[i][0] = dp[i-1][0]; } } for(int j = 1; j < n; j++){ if(obstacleGrid[0][j] == 1){ dp[0][j] = 0; } else { dp[0][j] = dp[0][j-1]; } } for(int i = 1; i < m; i++){ for(int j = 1; j < n; j++){ dp[i][j] = (obstacleGrid[i-1][j]==1?0:dp[i-1][j]) + (obstacleGrid[i][j-1]==1?0:dp[i][j-1]); } } return dp[m-1][n-1]; } }
标签:
原文地址:http://blog.csdn.net/yangliuy/article/details/43192585