标签:算法 算法导论 poj dinkelbach 图论
题意:给定一个<V,E>规模分别为L和P的有向图,每个点有点权,每个有向边有边权,请找出一个环路,使此环的点权和与边权和的除积最大。
题解:此类求两个集合和的最大除积,类似于0-1规划问题可以先转化为线性式子,然后利用二分或者Dinkelbach算法求得最大或者最小值。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define maxN 1005
#define maxP 5005
#define eps (1e-4)
struct node
{
short x,y;
short val;
};
class solve
{
private:
short funVal[maxN];
node edges[maxP];
int L,P;
double maxFunUnit;
public:
solve(int l,int p):L(l),P(p)
{
processIn();
maxFunUnit = two_partion();
if(maxFunUnit != -1)
{
printf("%.2lf\n",maxFunUnit);
}
else
{
printf("0.00\n");
}
}
int processIn();
double two_partion();
int bellman_ford(double funUnit);
};
int solve::bellman_ford(double funUnit)
{
short fa[maxN];
double dis[maxN];
double tmpDis;
int i,j;
char IsRelax;
short x,y;
for(i = 1;i <= L;i++)
{
dis[i] = 1e9;
}
for(i = 1;i <= L;i++)
{
fa[i] = i;
}
for(i = 0;i < L-1;i++)
{
IsRelax = false;
for(j = 0;j < P;j++)
{
x = edges[j].x;
y = edges[j].y;
tmpDis = dis[x]+((double)edges[j].val)*funUnit-(double)funVal[y];
if(dis[y] > tmpDis)
{
if(fa[x] == y)
return 1;
dis[y] = tmpDis;
fa[y] = fa[x];
IsRelax = true;
}
}
if(!IsRelax)
return 0;
}
for(j = 0;j < P;j++)
{
x = edges[j].x;
y = edges[j].y;
tmpDis = dis[x]+((double)edges[j].val)*funUnit-(double)funVal[y];
if(dis[y] > tmpDis)
{
return 1;
}
}
return 0;
}
double solve::two_partion()
{
if(!bellman_ford(-1.0))
return -1;
double left,right,mid;
left = 1e-3;
right = 1000;
while(right-left > eps)
{
mid = (left+right)/2;
if(bellman_ford(mid)) //有负环
{
left = mid;
}
else
{
right = mid;
}
}
return right;
}
int solve::processIn()
{
int i;
for(i = 1;i <= L;i++)
{
scanf("%d",funVal+i);
}
for(i = 0;i < P;i++)
{
scanf("%d%d%d",&(edges[i].x),&(edges[i].y),&(edges[i].val));
}
return 0;
}
int main()
{
int l,p;
while(~scanf("%d%d",&l,&p))
{
solve sightseeing(l,p);
}
return 0;
}#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
#define maxN 1005
#define eps (1e-4)
struct node
{
int adjNode;
int val;
};
class solve
{
private:
short funVal[maxN];
int L,P;
double maxFunUnit;
vector<vector<node> > adj;
public:
solve(int l,int p):L(l),P(p)
{
processIn();
maxFunUnit = two_partion();
if(maxFunUnit != -1)
{
printf("%.2lf\n",maxFunUnit);
}
else
{
printf("0.00\n");
}
}
int processIn();
double two_partion();
int spfa(double funUnit);
};
int solve::spfa(double funUnit)
{
char vis[maxN];
short fa[maxN];
short depth[maxN];
double dis[maxN];
double tmpDis;
int adjSize;
int i;
short now,next;
queue<short> q;
for(i = 1;i <= L;i++)
{
dis[i] = 1e9;
q.push(i);
fa[i] = i;
}
memset(vis,1,sizeof(vis));
memset(depth,0,sizeof(depth));
while(!q.empty())
{
now = q.front();
q.pop();
vis[now] = 0;
adjSize = adj[now].size();
for(i = 0;i < adjSize;i++)
{
next = adj[now][i].adjNode;
tmpDis = dis[now]+((double)(adj[now][i].val))*funUnit-(double)funVal[next];
if(dis[next] > tmpDis)
{
if(fa[now] == next)
return 1;
dis[next] = tmpDis;
fa[next] = fa[now];
if(!vis[next])
{
vis[next] = 1;
q.push(next);
depth[next]++;
if(depth[next] > L)
{
return 1;
}
}
}
}
}
return 0;
}
double solve::two_partion()
{
if(!spfa(-1.0))
return -1;
double left,right,mid;
left = 1e-3;
right = 1000;
while(right-left > eps)
{
mid = (left+right)/2;
if(spfa(mid)) //有负环
{
left = mid;
}
else
{
right = mid;
}
}
return right;
}
int solve::processIn()
{
int i;
int a;
node tmpNode;
for(i = 1;i <= L;i++)
{
scanf("%d",funVal+i);
}
adj.resize(L+1);
for(i = 0;i < P;i++)
{
scanf("%d%d%d",&a,&(tmpNode.adjNode),&(tmpNode.val));
adj[a].push_back(tmpNode);
}
return 0;
}
int main()
{
int l,p;
while(~scanf("%d%d",&l,&p))
{
solve sightseeing(l,p);
}
return 0;
}#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<cmath>
using namespace std;
#define maxN 1005
#define eps (1e-3)
struct node
{
int adjNode;
int val;
};
class solve
{
private:
short funVal[maxN];
double sumVal[maxN];
int L,P;
double maxFunUnit;
double nextFunUnit;
vector<vector<node> > adj;
public:
solve(int l,int p):L(l),P(p)
{
processIn();
maxFunUnit = two_partion();
printf("%.2lf\n",maxFunUnit);
}
int processIn();
double two_partion();
int spfa(double funUnit);
};
int solve::spfa(double funUnit)
{
char vis[maxN];
short fa[maxN];
short depth[maxN];
double dis[maxN];
double tmpDis;
int adjSize;
int i;
short now,next;
queue<short> q;
for(i = 1;i <= L;i++)
{
q.push(i);
fa[i] = i;
}
memset(dis,0,sizeof(dis));
memset(sumVal,0,sizeof(sumVal));
memset(vis,1,sizeof(vis));
memset(depth,0,sizeof(depth));
while(!q.empty())
{
now = q.front();
q.pop();
vis[now] = 0;
adjSize = adj[now].size();
for(i = 0;i < adjSize;i++)
{
next = adj[now][i].adjNode;
tmpDis = dis[now]+((double)(adj[now][i].val))*funUnit-(double)funVal[next];
if(dis[next] > tmpDis)
{
if(fa[now] == next)
{
nextFunUnit = funUnit/((tmpDis/(sumVal[now]+funVal[next]))+1.0);
//计算此负环的除积
return 1;
}
dis[next] = tmpDis;
fa[next] = fa[now];
sumVal[next] = sumVal[now]+funVal[next];
//记录从祖先结点到此节点的所有新生成的边权和
if(!vis[next])
{
vis[next] = 1;
q.push(next);
depth[next]++;
if(depth[next] > L)
{
nextFunUnit = funUnit/((tmpDis/(sumVal[now]+funVal[next]))+1.0);
return 1;
}
}
}
}
}
return 0;
}
double solve::two_partion()
{
double left,pre_Left;
int tmpRe;
left = 1e-3;
pre_Left = 100;
while(fabs(left-pre_Left) > eps)
{
tmpRe = spfa(left);
pre_Left = left;
if(tmpRe)
{
left = nextFunUnit+0.00001;
//加上精度防止再找到此负环
}
}
return left;
}
int solve::processIn()
{
int i;
int a;
node tmpNode;
for(i = 1;i <= L;i++)
{
scanf("%d",funVal+i);
}
adj.resize(L+1);
for(i = 0;i < P;i++)
{
scanf("%d%d%d",&a,&(tmpNode.adjNode),&(tmpNode.val));
adj[a].push_back(tmpNode);
}
return 0;
}
int main()
{
int l,p;
while(~scanf("%d%d",&l,&p))
{
solve sightseeing(l,p);
}
return 0;
}
POJ 3621--Sightseeing Cows(0-1规划求最大密度)
标签:算法 算法导论 poj dinkelbach 图论
原文地址:http://blog.csdn.net/dingzuoer/article/details/43282291