码迷,mamicode.com
首页 > 其他好文 > 详细

Gabor滤波器与纹理特征检索

时间:2015-01-30 09:15:52      阅读:288      评论:0      收藏:0      [点我收藏+]

标签:图像检索   纹理特征提取   gabor滤波器   gabor小波   

本文目录

1 Gabor函数的空频特性

2 Gabor滤波器组设计

3 纹理特征的表示


1 Gabor函数的空频特性

先介绍一下什么是Gabor函数,以非对称的Gabor函数为例:

技术分享(公式1)

它的实部是这样的:

技术分享(公式2)

Gabor函数的实况可以看成是一个高斯函数乘一个余弦函数,可以把高斯函数看成调制信号,把余弦函数看成载波信号,这样就容易相信gabor函数的波形了,如下:


技术分享

了解了gabor函数的构造,下面我们从傅里叶变换的性质出发,了解一下gabor函数的滤波特性。

(1)频移特性

我们知道高斯函数的傅里叶变换成是高斯函数,根据这个性质,我们可以通过傅里叶变换的频移特性来构造gabor滤波器。

Gabor函数的傅里叶变换公式:

技术分享

其中,u与v是频域的两个轴。从这个公式中,我们可以看出来高斯函数乘以一个余弦函数的作用是在频率域上,高斯函数延u轴方向进行了一个平移。这样,我们可以通过控制余弦函数的频率来调整gabor滤波器的中心频率了。

(2)线性特性

对于Gabor函数g(x,y)与它的傅里叶变换是G(u,v),那么根据傅里叶变换的线性特性:

令x‘=x*cos(a)+y*sin(a),y‘=y*cos(a)-x*sin(a),其中a是角度

g(x‘,y‘)的傅里叶变换就是G(u‘,v‘),其中u‘=u*cos(a)+v*sin(a),v‘=v*cos(a)-u*sin(a)。

空域上,坐标(x,y)到坐标(x‘,y‘)的变换的几何意义是图像逆时针旋转角度a,频域上也是这样的。

了解了这两个特性,下面可以学习一下滤波器组的设计了。


2 滤波器组的设计

技术分享

如上图所示:每一个圆代表一个Gabor滤波器,4个为一组,旋转6次就可以得到上图。通过上部分内容中的傅里叶变换的频移特性与线性性质,可以很容易理解这张图。

至于参数的求解,比较麻烦,可以参考《基于Gabor小波变换的纹理图像检索》这篇论文。

到于频率的选择,通常低频0.03(对应波的长度为33个像素),高频0.4(对应波的长度为25个像素)。


3 纹理特征的表示

以6方向,4尺度的滤波器组为例。得到Gabor滤波器后,把gabor滤波器与图像进行卷积,每个滤波器卷积后的图片求均值与方差,这样就可以得到一上48维的向量,作为这个图片的纹理特征。


本程序代码地址:https://github.com/zhihuiguan/gabor


Gabor滤波器与纹理特征检索

标签:图像检索   纹理特征提取   gabor滤波器   gabor小波   

原文地址:http://blog.csdn.net/d14665/article/details/43275281

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!