码迷,mamicode.com
首页 > 其他好文 > 详细

高数重要极限证明原创中英文对照版

时间:2015-01-31 02:02:30      阅读:564      评论:0      收藏:0      [点我收藏+]

标签:evidence   numbers   higher   高等数学   二项式   

高数重要极限证明原创中英文对照版

 

重要极限

Important Limit

作者 赵天宇

Author:Panda Zhao

 

 

 

 

 

 

 

我今天想在这里证明高等数学中的一个重要极限:

Today I want to prove animportant limit of higher mathematics by myself:

技术分享 


想要证明上述极限,我们先要去证明一个数列极限:

If we want to give evidence ofthe limit, first of all, there are a limit of a series of numbers according toa certain rule we need to certify:

技术分享

想要证明这个极限,我首先要介绍一个定理和一个法则:

Before we begin to prove thelimit, there are one theorem and one rule that are the key point we need to introduce:

1.       牛顿二项式定理Binomialtheorem

定理的定义为:

Definition of Binomial theorem:

技术分享

其中 技术分享,称为二项式系数,又有 技术分享的记法。

Among the formula: we define the 技术分享 as binomialcoefficient, it can be remembered to技术分享.

牛顿二项式定理(Binomial theorem)验证和推理过程:

The process of the ratiocination of Binomialtheorem:

采用数学归纳法

We consider to use the mathematical inductionto solve this problem.

n = 1(While n = 1:),

技术分享;


假设二项展开式n=m时成立。

We can make a hypothesis that the binomial expansionequation is true when n = m.

n=m+1,则:So if we suppose that n equal mplus one, we will CONTINUE技术分享 to deduce:
技术分享 

具体步骤解释如下:

The specific step of interpretation :

第三行:将ab乘入;

The 3rd line: a and b are multiplied into the binomial expansion equation.;

第四行:取出k=0的项;

The 4th line: take out of theitem which includes the k = 0 in the binomial expansion equation.;

第五行:设j=k-1

The 5th line: making a hypothesisthat is j = k-1;

第六行:取出k=m+1项;

The 6th line: What we need totake out of the item including k=m+1 in the binomial expansion equation.

第七行:两项合并;

The 7th line: Combining the twobinomial expansion equation.

第八行:套用帕斯卡法则;

The 8th line: At this line weneed to use the Pascal’s Rule to combine the binomial expansion equation whichare
技术分享.; 

接下来介绍一下帕斯卡法则(Pascal’s Rule)

So at this moment, we should get someknowledge about what the Pascal’s Rule is. Let’s see something about it:

帕斯卡法则(Pascal’s Rule):组合数学中的二项式系数恒等式,对于正整数nk(k<=n)有:

Pascal’s Rule: a binomial coefficientidentical equation of combinatorial mathematics. For the positive integer n andk (k<=n), there is a conclusion:

 技术分享

                  通常也可以写成:
                  
There is also commonly written:



技术分享 


代数证明:

Algebraic proof:

重写左边:

We can rewrite the left combinatorial item:

技术分享通分;reductionof fractions to a common.

技术分享                                         合并多项式;combining the polynomial.

技术分享                          证明完成;The Pascal’s Rule has been proved.

接下来只要要证明技术分享是单调增加并且有界的,那么就可以得到它存在极限,我们通常称它的极限为e

So what is our next step? The progression ofnumbers according to a certain rule of 技术分享should be proved that it is a monotonicincrease sequence and has a limitation. If we can do these things, we will drawa conclusion that the sequence has an limitation which we generally call e.

技术分享 


类似的,我们可以得到:

We can analogously get the技术分享:

 技术分享


可见, 技术分享 技术分享相比,除了前两个1相等之外,后面的项都要小,并且技术分享多一个值大于0的项目,因此:

Thus it can be seen, comparing 技术分享  with 技术分享 , all of the items of the 技术分享  are lower thanthese items in 技术分享 except the 1stand the 2rd one are equaling. In addition it has an item whose value is biggerthan zero that is in the 技术分享. So we can get a point :

技术分享

所以数列是单调递增的得证,接下来证明其有界性:

Because of the point, we can prove thesequence is an monotonic increase sequence, so we remain only one thing shouldbe proved that is the sequence’s limitation. So let’s get it :

技术分享 


可见{ 技术分享 }是有界的,所以根据数列极限存在准则可得:

Thus it can be seen , the sequence of 技术分享 has a limitation , as we know, we can draw aconclusion by the means of the rule of limitation of sequence exiting:

技术分享


本文出自 “前端、iOS学习记录” 博客,请务必保留此出处http://pandake.blog.51cto.com/9178223/1610168

高数重要极限证明原创中英文对照版

标签:evidence   numbers   higher   高等数学   二项式   

原文地址:http://pandake.blog.51cto.com/9178223/1610168

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!