标签:poj
1001
There is a permutation without two numbers in it, and now you know what numbers the permutation has. Please find the two numbers it lose.
There is a numberT shows there areT test cases below. (T≤10 )
For each test case , the first line contains a integersn , which means the number of numbers the permutation has. In following a line , there aren distinct postive integers.(1≤n≤1,000 )
For each case output two numbers , small number first.
2 3 3 4 5 1 1
1 2 2 3
解题思路:题意给的n个数是1~n+2之间的数,因此只需要将在1~n+2之间却不在给定的n个数的数找出来即可。
参考代码:
#include <iostream> #include <string.h> #include <iomanip> #include <algorithm> #include <cmath> using namespace std; typedef long long ll; int main(){ int n,t,a; bool used[1003]; cin>>t; while (t--){ cin>>n; memset(used,false,sizeof(used)); for (int i=0;i<n;i++){ cin>>a; used[a]=true; } int flag=0; for (int i=1;i<=n+2;i++){ if (used[i]==false){ flag++; if (flag==1) cout<<i<<" "; if (flag==2) cout<<i<<endl; } } } return 0; }
Following is the recursive definition of Fibonacci sequence:Fi=???01Fi?1+Fi?2i = 0i = 1i > 1
Now we need to check whether a number can be expressed as the product of numbers in the Fibonacci sequence.
There is a numberT shows there areT test cases below. (T≤100,000 )
For each test case , the first line contains a integers n , which means the number need to be checked.0≤n≤1,000,000,000
For each case output "Yes" or "No".
3 4 17 233
Yes No Yes
解题思路:首先用一个数组将fib数列保存下来,然后求出用一个数组将Fibonacci数组中属于n的因子的数保存,最后在递归搜索求解是否存在n是这些Fibonacci数组成的积;
参考代码:
#include <iostream> #include <stdio.h> #include <algorithm> #include <queue> #include <stack> #include <cmath> #include <string.h> using namespace std; int fib[100],a[100],i,k; bool work(int n,int step){ //递归搜索求解是否存在n是这些Fibonacci数组成的积 if (n==1) return true; for (int j=step;j<k;j++){ if (n%a[j]==0){ if (work(n/a[j],j)==true) return true; } } return false; } int main(){ int t,n; /*构造Fibonacci数组*/ fib[0]=0; fib[1]=1; for (i=2;i<46;i++){ fib[i]=fib[i-1]+fib[i-2]; } cin>>t; while (t--){ cin>>n; if (n==0){ cout<<"Yes"<<endl; continue; } k=0; for (int j=3;j<46;j++){ //用一个数组将Fibonacci数组中属于n的因子的数保存 if (n%fib[j]==0) a[k++]=fib[j]; } if (work(n,0)==true) cout<<"Yes"<<endl; else cout<<"No"<<endl; } return 0; }
标签:poj
原文地址:http://blog.csdn.net/codeforcer/article/details/43369855