码迷,mamicode.com
首页 > 其他好文 > 详细

【BZOJ 1064】 [Noi2008]假面舞会

时间:2015-02-01 12:16:31      阅读:207      评论:0      收藏:0      [点我收藏+]

标签:bzoj   oi   图论   

1064: [Noi2008]假面舞会

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 988  Solved: 507
[Submit][Status]

Description

一年一度的假面舞会又开始了,栋栋也兴致勃勃的参加了今年的舞会。今年的面具都是主办方特别定制的。每个参加舞会的人都可以在入场时选择一 个自己喜欢的面具。每个面具都有一个编号,主办方会把此编号告诉拿该面具的人。为了使舞会更有神秘感,主办方把面具分为k (k≥3)类,并使用特殊的技术将每个面具的编号标在了面具上,只有戴第i 类面具的人才能看到戴第i+1 类面具的人的编号,戴第k 类面具的人能看到戴第1 类面具的人的编号。 参加舞会的人并不知道有多少类面具,但是栋栋对此却特别好奇,他想自己算出有多少类面具,于是他开始在人群中收集信息。 栋栋收集的信息都是戴第几号面具的人看到了第几号面具的编号。如戴第2号面具的人看到了第5 号面具的编号。栋栋自己也会看到一些编号,他也会根据自己的面具编号把信息补充进去。由于并不是每个人都能记住自己所看到的全部编号,因此,栋栋收集的信 息不能保证其完整性。现在请你计算,按照栋栋目前得到的信息,至多和至少有多少类面具。由于主办方已经声明了k≥3,所以你必须将这条信息也考虑进去。

Input

第一行包含两个整数n, m,用一个空格分隔,n 表示主办方总共准备了多少个面具,m 表示栋栋收集了多少条信息。接下来m 行,每行为两个用空格分开的整数a, b,表示戴第a 号面具的人看到了第b 号面具的编号。相同的数对a, b 在输入文件中可能出现多次。

Output

包含两个数,第一个数为最大可能的面具类数,第二个数为最小可能的面具类数。如果无法将所有的面具分为至少3 类,使得这些信息都满足,则认为栋栋收集的信息有错误,输出两个-1。

Sample Input

【输入样例一】

6 5
1 2
2 3
3 4
4 1
3 5

【输入样例二】

3 3
1 2
2 1
2 3

Sample Output

【输出样例一】
4 4

【输出样例二】
-1 -1

HINT

100%的数据,满足n ≤ 100000, m ≤ 1000000。


图论题。


做题前一定要注意一点:

戴k号面具的人能看到戴1号面具的人!


如果a能看到b,我们从a到b连一条有向边。


分三种情况考虑:

1.无环且每个点入度为1:

k最大值就是最长链的长度;最小值显然就是3了。


2.有环:

在环中一定存在k看到1的情况,因此k必然是环长的约数。

k最大值就是所有环长最大公约数,最小值就是最大公约数的大于3的最小约数


3.无环,但是某些点的入度>1

技术分享

红点的入度为2,他在上面那条链上是第五个,下面的链上是第三个,可以发现k此时只能是1或2。


因为红点只能有一个标号,所以上面的链长与下面的链长模k一定是同余的。


因此k一定是链长差值的约数。




对于这三种情况,应该如何实现呢?


有一个重要的技巧,对于a看到b,连a-->b权值为1的边,b-->a权值为-1的边。


这样连边之后第三种情况就可以和有环的情况一起讨论了!


#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#define M 100005
using namespace std;
int ma,tot=0,mi,cirma,du[M],n,m,h[M],d[M],v[M];
struct edge
{
	int y,ne,v;
}e[M*20];
void read(int &tmp)
{
	tmp=0;
	char ch=getchar();
	int fu=1;
	for (;ch<'0'||ch>'9';ch=getchar())
		if (ch=='-') fu=-1;
	for (;ch>='0'&&ch<='9';ch=getchar())
		tmp=tmp*10+ch-'0';
	tmp*=fu;
}
void Addedge(int x,int y,int v)
{
	e[++tot].y=y;
	e[tot].v=v;
	e[tot].ne=h[x];
	h[x]=tot;
}
int gcd(int a,int b)
{
	return b==0?a:gcd(b,a%b);
}
void dfs(int root,int x)
{
	v[x]=1;
	for (int i=h[x];i;i=e[i].ne)
	{
		int y=e[i].y;
		if (!v[y]) 
		{
			d[y]=d[x]+e[i].v;
			dfs(root,y);
		}
		else
		{
			int k=abs(d[x]+e[i].v-d[y]);
			cirma=gcd(cirma,k);
		}
	}
}
void dfs2(int x)
{
	v[x]=1;
	for (int i=h[x];i;i=e[i].ne)
	{
		int y=e[i].y;
		if (v[y]) continue;
		d[y]=d[x]+e[i].v;
		dfs2(y);
	}
	if (ma<d[x]) ma=d[x];
	if (mi>d[x]) mi=d[x];
}
int main()
{
	read(n),read(m);
	cirma=0;
	for (int i=1;i<=m;i++)
	{
		int x,y;
		read(x),read(y);
		du[x]++;
        Addedge(x,y,1),Addedge(y,x,-1);
	}
	for (int i=1;i<=n;i++)
		v[i]=0,d[i]=0;
	for (int i=1;i<=n;i++)
		if (!v[i])
			d[i]=1,dfs(i,i);
	if (!cirma)
	{
		int tot=0;
		for (int i=1;i<=n;i++)
			v[i]=0;
		for (int i=1;i<=n;i++)
		{
			if (v[i]) continue;
			ma=0,mi=0,d[i]=0,dfs2(i),tot=tot+(ma-mi+1);
		}
		if (tot>=3) printf("%d 3\n",tot);
		else printf("-1 -1\n");
	}
	else
	{
		if (cirma<3) printf("-1 -1\n");
		else
		{
			int cirmin=0;
			for (int i=3;i<=cirma;i++)
				if (cirma%i==0)
				{
					cirmin=i;
					break;
				}
			printf("%d %d\n",cirma,cirmin);
		}
	}
	return 0;
}

 技术分享


感悟:

1.一开始wa不止,对于树形的数据答案没统计对:

对于树形的数据,k的最大值是每一个连通分量的最大深度之和。


对于一个连通分量,要用d最大的减去最小的再+1(因为存在-1的边,所以不能直接把最大的当做深度。。)


2.连负边方便求链长之差,同时保证环长正确性!很巧妙~

【BZOJ 1064】 [Noi2008]假面舞会

标签:bzoj   oi   图论   

原文地址:http://blog.csdn.net/regina8023/article/details/43369885

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!