码迷,mamicode.com
首页 > 其他好文 > 详细

灰度图像--图像增强 Robert算子、Sobel算子

时间:2015-02-01 16:10:31      阅读:1136      评论:0      收藏:0      [点我收藏+]

标签:图像增强   图像处理   sobel算子原理   robert算子   图像锐化   

学习DIP第36天

转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意。有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!!

文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

开篇废话


        继续废话,之前介绍了二阶微分,和非锐化掩蔽,按照顺序该说一阶微分了,一阶微分与二阶微分一样,是线性算子,线性算子的计算方法多半是生成模板,然后与图像卷积,一阶微分同样,几天简单的介绍两个一阶微分算子,Robert算子和Sobel算子,这两个算子应该算是大名鼎鼎了,因为这两个算子在后面的边缘检测中都是里程碑似的算法,在增强部分,他们也主要用在边缘增强,本文只简要介绍下两个算子的大概使用和增强效果,具体的数学原理推导和其他性质,将在图像分割部分完整介绍。

图像梯度介绍


      首先介绍下梯度,梯度并非是一个数值,梯度严格意义上是一个向量,这个向量指向当前位置变化最快的方向,可以这么理解,当你站在一个山上,你有360°的方向可以选择,哪个方向下降速度最快(最陡峭),便是梯度方向,梯度的长度,表示为向量的长度,表示最大的变化速率。
       梯度的数学表达:
技术分享
       其中技术分享表示微分算子。梯度在三维坐标中表示为:
技术分享
同样在二维中只取前两项,也就是由x方向的偏微分和y方向的偏微分组成。对于图像f中点(x,y)处的梯度,定义为:
技术分享
与上面所述保持一致,图像梯度方向给出图像变化最快方向,当前点的梯度长度为:
技术分享
次长度计算中有平方和开平方,所以将不再是现行操作。
为了简单计算,将上面求距离简化成:
技术分享
然而上面式子最大的问题在于不具有旋转不变形,也就是不是各向同性的,具体原因是三角形三遍关系原理,因为梯度方向和长度对于旋转是不变的,所以,x轴和y轴发生旋转的时候,直角三角形两边发生变化,但保持斜边长度和方向不变,因此两个直角边的长度和必然发生改变,也就是上面的M值必然会改变,顾其不具有旋转不变形。
       为了表达方便先重新来定义下模板位置,如下图

技术分享
        其中z5表示模板中心。

Robert算子


       奇葩算子Robert,说它奇葩确实奇葩,因为不知道Robert哪来的勇气或者推导过程,使用一个2x2的模板,而且是对角线做差,其差分为:
技术分享
因为向量无法在图像中显示,我们要计算梯度向量的长度:
技术分享
简化为绝对值方法:
技术分享
这个就是Robert交叉算子。模板:
技术分享

Sobel算子


因为Robert算子是2x2的模板,不是对称的奇数模板,我们更喜欢3x3的模板,所以,要根据上面的Robert算子改造出来一个3x3模板,提出了下面这个计算方法:
技术分享
       怎么来的?说实话我一开始也不知道,只是说根据上面Robert算子,搞出来一个等价的,其数字模板为:
技术分享
       并且其下降速率(梯度的长度)计算公式:
技术分享
       所有上面的疑惑就是这个公式:
技术分享
       到底是怎么来的,为什么中间会有2,以及为什么是隔行相减,下面的过程是我自己发明的,没有数学依据,只是自己的猜测,根据Robert算子的两个式子,横向划过3x3的所有位置,然后相加,就得到了Sobel算子:
技术分享
这个过程就用Robert产生了Sobel,同样的纵向移动就会产生x轴方向的算子。Sobel算子原理的论文不多,但都说这是个很好的边缘检测算子。

代码


Robert:

void Robert(double *src,double *dst,int width,int height){
    double RobertMask_x[9]={0,0,0,0,-1,0,0,0,1};
    double RobertMask_y[9]={0,0,0,0,0,-1,0,1,0};
    double *dst_x=(double *)malloc(sizeof(double)*width*height);
    double *dst_y=(double *)malloc(sizeof(double)*width*height);
    RealConvolution(src, dst_x, RobertMask_x, width, height, ROBERT_MASK_SIZE,ROBERT_MASK_SIZE);
    RealConvolution(src, dst_y, RobertMask_y, width, height, ROBERT_MASK_SIZE,ROBERT_MASK_SIZE);
    for(int j=0;j<height;j++)
        for(int i=0;i<width;i++){
            dst[j*width+i]=abs(dst_x[j*width+i])+abs(dst_y[j*width+i]);
            
        }
    free(dst_x);
    free(dst_y);
    
}

void RobertSharpen(double *src,double *dst,int width,int height,double c){
    Robert(src,dst,width,height);
    for(int j=0;j<height;j++)
        for(int i=0;i<width;i++){
            dst[j*width+i]=src[j*width+i]+c*dst[j*width+i];
        }
    
    
}<span style="color:#ffffff;">
</span>

Sobel:

void Sobel(double *src,double *dst,int width,int height){
    double SobelMask_x[9]={-1,-2,-1,0,0,0,1,2,1};
    double SobelMask_y[9]={-1,0,1,-2,0,2,-1,0,1};
    double *dst_x=(double *)malloc(sizeof(double)*width*height);
    double *dst_y=(double *)malloc(sizeof(double)*width*height);
    RealRelevant(src, dst_x, SobelMask_x, width, height, SOBEL_MASK_SIZE,SOBEL_MASK_SIZE);
    RealRelevant(src, dst_y, SobelMask_y, width, height, SOBEL_MASK_SIZE,SOBEL_MASK_SIZE);
    for(int j=0;j<height;j++)
        for(int i=0;i<width;i++){
            dst[j*width+i]=abs(dst_x[j*width+i])+abs(dst_y[j*width+i]);
        
        }
    free(dst_x);
    free(dst_y);
    
}

void SobelSharpen(double *src,double *dst,int width,int height,double c){
    Sobel(src,dst,width,height);
    for(int j=0;j<height;j++)
        for(int i=0;i<width;i++){
            dst[j*width+i]=src[j*width+i]+c*dst[j*width+i];
        }


}



结果


原图:
技术分享
Robert:
技术分享
Robert Sharpen:
技术分享
Sobel:
技术分享
Sobel Sharpen:
技术分享
可以观察出Sobel边缘较宽,来观察简单图形的Robert和Sobel局部放大图:
技术分享
Robert:
技术分享
Sobel:

技术分享
Robert局部放大1,2,3:

技术分享


技术分享


技术分享

Sobel局部放大图1,2,3:

技术分享


技术分享 


技术分享


总结

      Sobel和Robert都能对边缘有较强的响应,而且Sobel对边缘的响应较宽而且更加强烈,Robert算子对边缘响应较弱,而且对弯曲的边缘敏感度第(Robert1中圆形弧形部分亮度低)。
 待续。。。。


灰度图像--图像增强 Robert算子、Sobel算子

标签:图像增强   图像处理   sobel算子原理   robert算子   图像锐化   

原文地址:http://blog.csdn.net/tonyshengtan/article/details/43371031

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!