标签:
Description
Count the Trees |
Juan is a very gifted programmer, and has a severe case of ACM (he even participated in an ACM world championship a few months ago). Lately, his loved ones are worried about him, because he has found a new exciting problem to exercise his intellectual powers, and he has been speechless for several weeks now. The problem is the determination of the number of different labeled binary trees that can be built using exactlyn different elements.
For example, given one element A, just one binary tree can be formed (usingA as the root of the tree). With two elements, A and B, four different binary trees can be created, as shown in the figure.
If you are able to provide a solution for this problem, Juan will be able to talk again, and his friends and family will be forever grateful.
1 2 10 25 0
1 4 60949324800 75414671852339208296275849248768000000
题意:给你n个点,问能够构成多少种不同的树。
解析:卡特兰数。
AC代码:
#include<cstdio> #include<cstring> #define SIZE 200 #define MAXN 302 #define BASE 10000 using namespace std; int Canlan[MAXN][SIZE]; int temp[SIZE]; void A(int n) { memcpy(temp, Canlan[n], sizeof(temp)); int e = 0; for(int fac = n; fac>0; --fac) { for(int i = SIZE-1, remain = 0; i>=0; --i) { e = temp[i] * fac + remain; temp[i] = e % BASE; remain = e / BASE; } } memcpy(Canlan[n], temp, sizeof(int)*SIZE); } void multiply(int elem) { for(int i=SIZE-1, remain = 0; i >= 0; --i) { remain = temp[i] * elem + remain; temp[i] = remain % BASE; remain = remain / BASE; } return; } void divide(int elem) { int i; for(i=0; i<SIZE && temp[i] == 0; i++); for(int remain = 0; i < SIZE; ++i) { remain += temp[i]; temp[i] = remain / elem; remain = (remain % elem) * BASE; } return; } void Cantalan() { memset(Canlan[1], 0, sizeof(int)*SIZE); Canlan[1][SIZE-1] = 1; for(int i=2; i<MAXN; ++i) { memcpy(temp, Canlan[i-1], sizeof(int)*SIZE); multiply(4*i-2); divide(i+1); memcpy(Canlan[i], temp, sizeof(int)*SIZE); } return; } int main() { int n; Cantalan(); for(int i=1; i<MAXN; ++i) A(i); while(scanf("%d", &n) != EOF && n) { int i; for(i=0; i<SIZE && Canlan[n][i] == 0; i++); printf("%d", Canlan[n][i]); if(i+1 == SIZE) { printf("\n"); continue; } for(i=i+1; i<SIZE; ++i) printf("%04d", Canlan[n][i]); printf("\n"); } return 0; }
UVa 10007 & hdu 1131 Count the Trees (卡特兰数)
标签:
原文地址:http://blog.csdn.net/u013446688/article/details/43381899