在开始写之前,我很担心,能不能把这部分写清楚,毕竟书上满天的switch…case,并且还只是一半——有左旋没有右旋,有插入没有删除。后来,我变得有信心了——因为书上都没有说清楚,都在那里说梦话。我没有找到AVL树的发明者的原著(G. M. Adelson-Velskii and Y. M. Landis. An algorithm for the organization of information. Soviet Math. Dokl., 3:1259--1262, 1962.)也不知道我下面所写的是不是体现了发明者的本意,但至少,我认为现在的教科书歪曲了发明者的本意。
? 平衡
下面的引文出自Algorithms and Data Structures (Niklaus Wirth, Prentice-Hall, Englewood Cliffs, NJ, 1986 ISBN: 0-13-022005-1 pp. 215 – 226)
One such definition of balance has been postulated by Adelson-Velskii and Landis [4-1]. The balance criterion is the following:
A tree is balanced if and only if for every node the heights of its two subtrees differ by at most 1.
Trees satisfying this condition are often called AVL-trees (after their inventors). We shall simply call them balanced trees because this balance criterion appears a most suitable one. (Note that all perfectly balanced trees are also AVL-balanced.)
The definition is not only simple, but it also leads to a manageable rebalancing procedure and an average search path length practically identical to that of tbe perfectly balanced tree.
科技文都比较好懂,本人翻译水平比较差,就不献丑了,我只想让大家注意最后一段的画线部分,平衡化应该是易于操作的,而绝不是现在你在书上看到的铺天盖地的switch…case。
? 旋转
平衡化靠的是旋转。参与旋转的是3个节点(其中一个可能是外部节点NULL),旋转就是把这3个节点转个位置。注意的是,左旋的时候p->right一定不为空,右旋的时候p->left一定不为空,这是显而易见的。
p |
|
|
|
p |
p |
|
左旋 |
|
t |
|
t |
|
(p) |
|
(NULL) |
|
|
|
(NULL) |
可以看到,左旋确实是在向“左”旋转,还是很形象的。右旋是左旋的镜像,就不再另行说明了。下表是左旋和右旋各个节点的指针变换情况。(括号表示NULL的情况不执行)
左旋 |
右旋 |
||
t->parent = p->parent |
p->parent = t |
t->parent = p->parent |
p->parent = t |
(t->left->parent = p) |
p->right = t->left |
(t->right->parent = p) |
p->left = t->right |
t->left = p |
p = t |
t->right = p |
p = t |
? 平衡因子(bf——balance factor)
AVL树的平衡化靠旋转,而是否需要平衡化,取决于树中是否出现了不平衡。为了避免每次判断平衡时,都求一下左右子树的高度,引入了平衡因子。很可能是1962年的时候AV&L没有亲自给出定义,时下里平衡因子的定义乱七八糟——我看了4本书,两本是bf = 左高-右高,两本是bf = 右高-左高。最有意思的是两本中国人(严蔚敏和殷人昆)写的一本左减右,一本右减左;两本外国人写的也是这样。虽然没什么原则上的差别,可苦了中国的莘莘学子们——考试的时候可不管你是哪个门派的。我照顾自己的习惯,下面的bf = 左高-右高,习惯不同的请自己注意。
这样一来,是否需要平衡化的条件就很明了了——| bf | > 1。如果从空树开始建立,并时刻保持平衡,那么不平衡只会发生在插入删除操作上,而不平衡的标志就是出现bf == 2或者 bf == -2的节点。
在AVL树插入和删除,实际上就是先按照普通二叉搜索树插入和删除,然后再平衡化。可以肯定的说,插入和删除需要的最多平衡化次数不同(下面会给出根本原因),但这不表明插入和删除时的平衡化的思路有很大差别。现有的教科书,仅仅从表面上看到了到了平衡化操作次数不同的假象,而没有从根本上认识到插入和删除对称的本质,搞得乱七八糟不说(铺天盖地的switch…case),还严重的误导了读者——以为删除操作复杂的不可捉摸。
AVL树体现了一种平衡的美感,两种旋转是互为镜像的,插入删除是互为镜像的操作,没理由会有那么大的差别。实际上,平衡化可以统一的这样来操作:
1. while (current != NULL)修改current的平衡因子。
? 插入节点时current->bf += (current->data > *p)?1:-1;
? 删除节点时current->bf -= (current->data > *p)?1:-1;
? current指向插入节点或者实际删除节点的父节点,这是普通二叉搜索树的插入和删除操作带来的结果。*p初始值是插入节点或者实际删除节点的data。因为删除操作可能实际删除的不是data。
2. 判断是否需要平衡化
if (current->bf == -2) L_Balance(c_root); else if (current->bf == 2) R_Balance(c_root);
3. 是否要继续向上修改父节点的平衡因子
? 插入节点时if (!current->bf) break;这时,以current为根的子树的高度和插入前的高度相同。
? 删除节点时if (current->bf) break;这时,以current为根的子树的高度和删除前的高度相同
? 之所以删除操作需要的平衡化次数多,就是因为平衡化不会增加子树的高度,但是可能会减少子树的高度,在有有可能使树增高的插入操作中,一次平衡化能抵消掉增高;在有可能使树减低的删除操作中,平衡化可能会带来祖先节点的不平衡。
4. 当前节点移动到父节点,转1
p = &(current->data); current = current->parent;
完整的插入删除函数如下:
bool insert(const T &data)
{
if (!BSTree<T>::insert(data)) return false; const T* p = &data;
while (current)
{
current->bf += (current->data > *p)?1:-1;
if (current->bf == -2) L_Balance(c_root);
else if (current->bf == 2) R_Balance(c_root);
if (!current->bf) break;
p = &(current->data); current = current->parent;
}
return true;
}
bool remove(const T &data)
{
if (!BSTree<T>::remove(data)) return false; const T* p = &r_r_data;
//在class BSTree里添加proteceted: T r_r_data,在BSTree<T>::remove(const T &data)里修改为实际删除的节点的data
while (current)
{
current->bf -= (current->data > *p)?1:-1;
if (current->bf == -2) L_Balance(c_root);
else if (current->bf == 2) R_Balance(c_root);
if (current->bf) break;
p = &(current->data); current = current->parent;
}
return true;
}
你可以看到,他们是多么的对称。
定义:平衡二叉树或为空树,或为如下性质的二叉排序树:
(1)左右子树深度之差的绝对值不超过1;
(2)左右子树仍然为平衡二叉树.
平衡因子BF=左子树深度-右子树深度.
平衡二叉树每个结点的平衡因子只能是1,0,-1。若其绝对值超过1,则该二叉排序树就是不平衡的。
如图所示为平衡树和非平衡树示意图:
二、平衡二叉树算法思想
若向平衡二叉树中插入一个新结点后破坏了平衡二叉树的平衡性。首先要找出插入新结点后失去平衡的最小子树根结点的指针。然后再调整这个子树中有关结点之间的链接关系,使之成为新的平衡子树。当失去平衡的最小子树被调整为平衡子树后,原有其他所有不平衡子树无需调整,整个二叉排序树就又成为一棵平衡二叉树。
失去平衡的最小子树是指以离插入结点最近,且平衡因子绝对值大于1的结点作为根的子树。假设用A表示失去平衡的最小子树的根结点,则调整该子树的操作可归纳为下列四种情况。
(1)LL型平衡旋转法
由于在A的左孩子B的左子树上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行一次顺时针旋转操作。即将A的左孩子B向右上旋转代替A作为根结点,A向右下旋转成为B的右子树的根结点。而原来B的右子树则变成A的左子树。
(2)RR型平衡旋转法
由于在A的右孩子C的右子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行一次逆时针旋转操作。即将A的右孩子C向左上旋转代替A作为根结点,A向左下旋转成为C的左子树的根结点。而原来C的左子树则变成A的右子树。
(3)LR型平衡旋转法
由于在A的左孩子B的右子数上插入结点F,使A的平衡因子由1增至2而失去平衡。故需进行两次旋转操作(先逆时针,后顺时针)。即先将A结点的左孩子B的右子树的根结点D向左上旋转提升到B结点的位置,然后再把该D结点向右上旋转提升到A结点的位置。即先使之成为LL型,再按LL型处理。
如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到A的左子树上,此时成为LL型,再按LL型处理成平衡型。
(4)RL型平衡旋转法
由于在A的右孩子C的左子树上插入结点F,使A的平衡因子由-1减至-2而失去平衡。故需进行两次旋转操作(先顺时针,后逆时针),即先将A结点的右孩子C的左子树的根结点D向右上旋转提升到C结点的位置,然后再把该D结点向左上旋转提升到A结点的位置。即先使之成为RR型,再按RR型处理。
如图中所示,即先将圆圈部分先调整为平衡树,然后将其以根结点接到A的左子树上,此时成为RR型,再按RR型处理成平衡型。
平衡化靠的是旋转。参与旋转的是3个节点(其中一个可能是外部节点NULL),旋转就是把这3个节点转个位置。注意的是,左旋的时候p->right一定不为空,右旋的时候p->left一定不为空,这是显而易见的。
如果从空树开始建立,并时刻保持平衡,那么不平衡只会发生在插入删除操作上,而不平衡的标志就是出现bf == 2或者 bf == -2的节点。
原文地址:http://blog.csdn.net/gggg_ggg/article/details/43405857