标签:
http://acm.hdu.edu.cn/showproblem.php?pid=4322
2 3 2 2 2 2 0 0 0 0 0 1 3 2 2 2 2 0 0 0 0 0 0
Case #1: YES Case #2: NOHintGive the first and second candy to the first kid. Give the third candy to the second kid. This allocate make all kids happy.
/** hdu 4322 最大费用最大流 题目大意:(题解转) like[i][j]表示第i个孩子喜欢第j个糖果(总共m个孩子,n个糖)。 如果孩子拿到他喜欢的糖果,那么他将会增加k个欢乐值; 拿到不喜欢的,增加1。 如果孩子i的欢乐值大于B[i],那么他才是开心的。能否有一种分配方案,让所有孩子都开心。 解题思路: 首先声明,由于被小孩子不喜欢的糖果的对小孩产生的效力是一样的,所以我们在网络流的时候先不考虑。 1 - 源点0到1~N个糖果,容量为1,费用为0 2 - 根据like数组,like[i][j] == 1时在糖果j和人N+i之间建立有一条边,容量为1,费用为0 3*- 根据b[i]和K的值建立小孩和汇点之间的边: 如果b[i] 是 K 的倍数, 说明花费b[i] / K个喜欢的糖果可以达到b[i],建立一条边,费用为K,容量为b[i] / K; 否则,将这条边拆为两部分,第一部分是b[i] / K的部分,第二部分根据b[i] % K的部分。(如果b[i] % k == 0,说明b[i]是k的倍数; 若b[i] % k == 1, 特殊糖果和一般糖果价值一样,没必要当做特殊糖果处理) 建好图后,求最大费用最大流(只需将费用改为负的,然后套最小费用最大流即可).。 得出特殊糖果匹配b[i]的最大值。看剩余的普通糖果是否满足缺少的b[i]。 */ #include <iostream> #include <string.h> #include <algorithm> #include <cstdio> using namespace std; const int oo=1e9;//无穷大 const int maxm=1111;//边的最大数量,为原图的两倍 const int maxn=42;//点的最大数量 int node,src,dest,edge;//node节点数,src源点,dest汇点,edge边数 int head[maxn],p[maxn],dis[maxn],q[maxn],vis[maxn];//head链表头,p记录可行流上节点对应的反向边,dis计算距离 int n,m,k,dist[maxn],lik[maxn][maxn],Flow; struct edgenode { int to;//边的指向 int flow;//边的容量 int cost;//边的费用 int next;//链表的下一条边 } edges[maxm]; void prepare(int _node,int _src,int _dest); void addedge(int u,int v,int f,int c); bool spfa(); inline int min(int a,int b) { return a<b?a:b; } inline void prepare(int _node,int _src,int _dest) { node=_node; src=_src; dest=_dest; for (int i=0; i<node; i++) { head[i]=-1; vis[i]=false; } edge=0; } void addedge(int u,int v,int f,int c) { edges[edge].flow=f; edges[edge].cost=c; edges[edge].to=v; edges[edge].next=head[u]; head[u]=edge++; edges[edge].flow=0; edges[edge].cost=-c; edges[edge].to=u; edges[edge].next=head[v]; head[v]=edge++; } bool spfa() { int i,u,v,l,r=0,tmp; for (i=0; i<node; i++) dis[i]=oo; dis[q[r++]=src]=0; p[src]=p[dest]=-1; for (l=0; l!=r; ((++l>=maxn)?l=0:1)) { for (i=head[u=q[l]],vis[u]=false; i!=-1; i=edges[i].next) { if (edges[i].flow&&dis[v=edges[i].to]>(tmp=dis[u]+edges[i].cost)) { dis[v]=tmp; p[v]=i^1; if (vis[v]) continue; vis[q[r++]=v]=true; if (r>=maxn) r=0; } } } return p[dest]>=0; } int spfaflow() { int i,ret=0,delta; while (spfa()) { //按记录原路返回求流量 for (i=p[dest],delta=oo; i>=0; i=p[edges[i].to]) { delta=min(delta,edges[i^1].flow); } for (int i=p[dest]; i>=0; i=p[edges[i].to]) { edges[i].flow+=delta; edges[i^1].flow-=delta; } ret+=delta*dis[dest]; Flow+=delta; } return ret; } int main() { int T,tt=0; scanf("%d",&T); while(T--) { scanf("%d%d%d",&n,&m,&k); int sum=0; for(int i=1; i<=m; i++) { scanf("%d",&dist[i]); sum+=dist[i]; } prepare(n+m+2,0,n+m+1); for(int i=1; i<=n; i++) { addedge(src,i,1,0); } for(int i=1; i<=m; i++) { for(int j=1; j<=n; j++) { int u; scanf("%d",&u); if(u==1) { addedge(j,i+n,1,0); } } } for(int i=1;i<=m;i++) { addedge(i+n,dest,dist[i]/k,-k); if(dist[i]%k>1) { addedge(i+n,dest,1,-dist[i]%k); } } printf("Case #%d: ",++tt); Flow=0; int cost=spfaflow(); if(sum+cost<=n-Flow) printf("YES\n"); else printf("NO\n"); } return 0; }
标签:
原文地址:http://blog.csdn.net/lvshubao1314/article/details/43483605