码迷,mamicode.com
首页 > 其他好文 > 详细

决策树模型比较:C4.5,CART,CHAID,QUEST

时间:2015-02-04 14:28:37      阅读:463      评论:0      收藏:0      [点我收藏+]

标签:

(1)C4.5算法的特点为:

输入变量(自变量):为分类型变量或连续型变量。

输出变量(模板变量):为分类型变量。

连续变量处理:N等分离散化。

树分枝类型:多分枝。

分裂指标:信息增益比率gain ratio(分裂后的目标变量取值变异较小,纯度高)

前剪枝:叶节点数是否小于某一阈值。

后剪枝:使用置信度法和减少-误差法。

(2)CART算法的特点为:

输入变量(自变量):为分类型变量或连续型变量。

输出变量(目标变量):为分类型变量(或连续型:回归分析)

连续变量处理:N等分离散化。

树分枝类型:二分枝。

分裂指标:gini增益(分裂后的目标变量取值变异较小,纯度高)。

前剪枝:maxdepth,minsplit,minbucket,mincp

后剪枝:使用最小代价复杂度剪枝法(MCCP)

(3)条件推理决策树(CHAID,QUEST)算法的特点为:

输入变量(自变量):为分类变量或连续型变量。

输出变量(目标变量):为分类型变量(或连续型:回归分析)。

连续变量处理:N等分离散化。

树分枝类型:二分枝(以party包中的ctree函数为例)。

分裂指标:独立性检验和相关性(分裂后自变量与目标变量的相关性)

 

决策树模型比较:C4.5,CART,CHAID,QUEST

标签:

原文地址:http://www.cnblogs.com/payton/p/4272100.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!