关于原根的一些知识点:
定义1:设,,使得成立的最小的,称为对模的阶,记为。
定理1:如果模有原根,那么它一共有个原根。
定理2:若,,,则。
定理3:如果为素数,那么素数一定存在原根,并且模的原根的个数为。
定理4:设是正整数,是整数,若模的阶等于,则称为模的一个原根。
假设一个数对于模来说是原根,那么的结果两两不同,且有,那么可以称为是模的一个原根,归根到底就是当且仅当指数为的时候成立。(这里是素数)
定理5:模有原根的充要条件:,其中是奇素数。
求模素数原根的方法:对素因子分解,即是的标准分解式,若恒有
成立,则就是的原根。(对于合数求原根,只需把换成即可)
以上内容转自http://blog.csdn.net/acdreamers/article/details/8883285
求原根的代码:
题目:
poj 1284
题意:
给出一个数n,求原根数目。
限制:
3 <= n < 65536; n为奇素数。
思路:
因为n是素数,所以模n的原根数=phi(phi(n))=phi(n-1)。
phi(i) 可以预处理出来。
原文地址:http://blog.csdn.net/whai362/article/details/43525015