题目大意:给出一棵树,每个节点都有一个充电概率,每一条边有一个导电概率,求期望有多少个点充电。
思路:写不出题解,粘一个详细的地址:http://wyfcyx.is-programmer.com/posts/74623.html
CODE:
#define _CRT_SECURE_NO_WARNINGS #include <cstdio> #include <cstring> #include <iomanip> #include <iostream> #include <algorithm> #define EPS 1e-8 #define MAX 500010 using namespace std; int points; double src[MAX]; int head[MAX],total; int _next[MAX << 1],aim[MAX << 1]; double length[MAX << 1]; int father[MAX]; double f[MAX][2],p[MAX]; inline void Add(int x,int y,double len) { _next[++total] = head[x]; aim[total] = y; length[total] = len; head[x] = total; } void DFS1(int x,int last) { f[x][0] = 1.0 - src[x]; father[x] = last; for(int i = head[x]; i; i = _next[i]) { if(aim[i] == last) continue; p[aim[i]] = length[i]; DFS1(aim[i],x); f[x][0] *= (f[aim[i]][0] + (1 - f[aim[i]][0]) * (1 - length[i])); } } void DFS2(int x,int last) { for(int i = head[x]; i; i = _next[i]) { if(aim[i] == last) continue; double t = f[aim[i]][0] + (1 - f[aim[i]][0]) * (1 - length[i]); double _p = t < EPS ? 0:f[x][1] * f[x][0] / t; f[aim[i]][1] = _p + (1 - _p) * (1 - length[i]); DFS2(aim[i],x); } } int main() { cin >> points; for(int x,y,z,i = 1; i < points; ++i) { scanf("%d%d%d",&x,&y,&z); Add(x,y,(double)z / 100.0),Add(y,x,(double)z / 100.0); } for(int i = 1; i <= points; ++i) { scanf("%lf",&src[i]); src[i] /= 100.0; } DFS1(1,0); f[1][1] = 1; DFS2(1,0); double ans = .0; for(int i = 1; i <= points; ++i) ans += (1 - f[i][0] * f[i][1]); cout << fixed << setprecision(6) << ans << endl; return 0; }
BZOJ 3566 SHOI 2014 概率充电器 概率DP
原文地址:http://blog.csdn.net/jiangyuze831/article/details/43528857