标签:dp 最长上升子序列
题目链接:http://poj.org/problem?id=2533
Longest Ordered Subsequence
Time Limit: 2000MS |
|
Memory Limit: 65536K |
Total Submissions: 35605 |
|
Accepted: 15621 |
Description
A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN)
be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence
(1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
Source
题意:求最长上升子序列长度
题解:DP 这题我WA了两发.....~~~~(>_<)~~~~
AC代码:
#include<iostream>
#include<cstring>
#define N 1005
using namespace std;
int dp[N],num[N],n;
int main()
{
cin.sync_with_stdio(false);
while(cin>>n){
int res=1;
for(int i=0;i<n;i++)dp[i]=1;
for(int i=0;i<n;i++)cin>>num[i];
for(int i=1;i<n;i++){
for(int j=0;j<i;j++){
if(num[i]>num[j])dp[i]=max(dp[i],dp[j]+1);
else if(num[i]==num[j])dp[i]=max(dp[i],dp[j]);
}
if(res<dp[i])res=dp[i];
}
cout<<res<<endl;
}
return 0;
}
POJ 2533 Longest Ordered Subsequence
标签:dp 最长上升子序列
原文地址:http://blog.csdn.net/mummyding/article/details/43539911