码迷,mamicode.com
首页 > 其他好文 > 详细

ural 1009. K-based Numbers dp 高精度

时间:2015-02-07 13:14:20      阅读:142      评论:0      收藏:0      [点我收藏+]

标签:


1009. K-based Numbers

Time limit: 1.0 second
Memory limit: 64 MB
Let’s consider K-based numbers, containing exactly N digits. We define a number to be valid if itsK-based notation doesn’t contain two successive zeros. For example:
  • 1010230 is a valid 7-digit number;
  • 1000198 is not a valid number;
  • 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing Ndigits.
You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.

Input

The numbers N and K in decimal notation separated by the line break.

Output

The result in decimal notation.

Sample

input output
2
10
90
Problem Source: USU Championship 1997

dp[i][0]代表第i位不存在0的情况,dp[i][1]代表第i位存在1的情况。
dp[i][1]=dp[i-1][0]表示在前i-1个数中最后一个数不是0 的情况补0
dp[i][0]=(k-1)*(dp[i-1][0]+dp[i-1][1])表示在前i-1位中无论最后一位是不是0都补1~9的情况

//0.125	3 854 KB
import java.math.BigInteger;
import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner cin = new Scanner(System.in);// 输入
		BigInteger dp[][] = new BigInteger[2007][2];
		int n, k;
		n = cin.nextInt();
		k = cin.nextInt();
		dp[1][0] = (BigInteger.valueOf(k - 1));
		dp[1][1] = (BigInteger.valueOf(0));
		for (int i = 2; i <= n; i++) {
			dp[i][0] = (dp[i - 1][0].add(dp[i-1][1])).multiply(BigInteger.valueOf(k-1));
			dp[i][1] = (dp[i - 1][0]);
		}
		System.out.println(dp[n][0].add(dp[n][1]));
	}
}


ural 1009. K-based Numbers dp 高精度

标签:

原文地址:http://blog.csdn.net/crescent__moon/article/details/43602165

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!