码迷,mamicode.com
首页 > 其他好文 > 详细

欧拉函数

时间:2014-06-03 09:54:28      阅读:279      评论:0      收藏:0      [点我收藏+]

标签:c   style   class   blog   a   http   

 

欧拉函数的定义:E(k)=([1,n-1]中与n互质的整数个数).
   
     由于随意正整数都能够唯一表示成例如以下形式:
                     k=p1^a1*p2^a2*……*pi^ai;(即分解质因数形式)
    能够推出:E(k)=(p1-1)(p2-1)……(pi-1)*(p1^(a1-1))(p2^(a2-1))……(pi^(ai-1))
               =k*(p1-1)(p2-1)……(pi-1)/(p1*p2*……pi);
               =k*(1-1/p1)*(1-1/p2)....(1-1/pk)
     ps:在程序中利用欧拉函数例如以下性质,能够高速求出欧拉函数的值(a为N的质因素)
若(N%a==0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;

若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);

http://hi.baidu.com/ldante/blog/item/996b0ea131a7a58f46106443.html

第一次写欧拉函数的题,琢磨的半天,最后还是仅仅能依照最開始的想法写......
欧拉函数PHI(n)表示的是比n小,而且与n互质的正整数的个数(包含1)。比方:
PHI(1) = 1; PHI(2) = 1; PHI(3) = 2; PHI(4) = 2; ... PHI(9) = 6; ...

要计算一个正整数n的欧拉函数的方法例如以下:
1. 将n表示成素数的乘积: n = p1 ^ k1 * p2 ^ k2 * ... * pn ^ kn(这里p1, p2, ..., pn是素数)
2. PHI(n) = (p1 ^ k1 - p1 ^ (k1 - 1)) * (p2 ^ k2 - p2 ^ (k2 - 1)) * ... *
(pn ^ kn - pn ^ (kn - 1))
              = Mult { pi ^ ki - pi ^ (ki -1) }

证明步骤例如以下:
1. easy想到:当n为素数时,PHI(n) = n - 1。由于每一个比n小的正整数都和n互素。当n为素数p的k次方时,PHI(n) = p ^ k - p ^ (k - 1)。由于在1到n之间的正整数仅仅有p的倍数和n不互素,这种数有(p ^ k / p)个。
2. 假设m和n互素,即GCD(m, n) = 1,那么PHI(m * n) = PHI(m) * PHI(n)。用中国剩余定理能够证明,证明的思路是建立这样一种一一相应的关系(a, b) <-> x,当中正整数a小于m而且gcd(a, m) = 1,正整数b小于n而且gcd(b, n) = 1,正整数x小于m*n而且gcd(m*n, x) = 1。证明步骤例如以下:
    1)依据中国剩余定理,假设m和n互素,那么关于未知量x的方程组x % m = a, x % n = b(0 <= a < m, 0 <= b < n),当0 <= x < m * n时存在而且仅存在一个解。easy证明,假设两个这种方程组有同样的m, n可是a, b不同,那么他们的解x一定不同。
    2)首先用反正法证明:gcd(m, a) = 1且gcd(n, b) = 1是gcd(m*n, x) = 1的必要条件:如果gcd(a, m) = k > 1,由此可得:a = a‘ * k; m = m‘ * k => x = k‘ * m + a = k‘ * k * m‘ + k * a‘ = k * (k‘ * m‘ + a‘); 所以gcd(x, m) = k > 1。同理可证,如果gcd(b, n) > 1, 那么gcd(x, n) > 1。所以x和m * n互素的必要条件是a和m互诉且b和n互素。
    3)接下来我们证明充分性:由x % m = a 能够得到x = k * m + a;由欧几里德算法求最大公约数的过程(就不证明了,呵呵,还得想)能够知道gcd(x, m) = gcd(m, a) = 1;同理可得,假设gcd(n, b) = 1那么gcd(x, n) = 1。接下来非常easy得到:gcd(m*n, x) = 1。从而证明了充分性。
    4)上面三步的结论表明,数对(a, b)是能够和x建立起一一相应的关系的,所以有多少个不同的(a, b),就有多少个不同的x。
3.将n分解成素数乘积后,显然对于随意的i, j(i != j)都满足 pi ^ ki和pj ^ kj是互素的,于是能够的到上面的公式。

跟据上面的公式,能够得到关于欧拉函数的递推关系:
如果素数p能整除n,那么
假设p还能整除n / p, PHI(n) = PHI(n / p) * p;
假设p不能整除n / p, PHI(n) = PHI(n / p) * (p - 1);

以下是两种求欧拉函数的不同编程方法:

/*==================================================*\
|递推求欧拉函数phi(i)
\*==================================================*/
for (i = 1; i <= maxn; i++) phi[i] = i;
for (i = 2; i <= maxn; i += 2) phi[i] /= 2;
for (i = 3; i <= maxn; i += 2) if(phi[i] == i) {
for (j = i; j <= maxn; j += i)
phi[j] = phi[j] / i * (i - 1);


/*==================================================*\
|单独求欧拉函数phi(x)
\*==================================================*/
unsigned euler(unsigned x)
{// 就是公式
unsigned i, res=x;
for (i = 2; i < (int)sqrt(x * 1.0) + 1; i++)
if(x%i==0) {
res = res / i * (i - 1);
while (x % i == 0) x /= i; // 保证i一定是素数
}
if (x > 1) res = res / x * (x - 1);
return res;
}

欧拉函数,布布扣,bubuko.com

欧拉函数

标签:c   style   class   blog   a   http   

原文地址:http://www.cnblogs.com/mengfanrong/p/3760451.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!