首先,这里要运用到离散数学里的定理——欧拉定理:在平面图中,其顶点,边,面的关系为 v + r - e = 2 (v为顶点数,r为面数,e为边数)
则只需求出顶点数以及边数就可以求出面数了
这里平面图的结点由原来的结点和新增的结点组成,由于可能出现三线共点,需要删除重复的点(这里用unique)
AC代码:
#include <cstdio> #include <cstring> #include <algorithm> #include <iostream> #include <cmath> using namespace std; struct Point { double x, y; Point(double x = 0, double y = 0) : x(x) , y(y) { } }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x+B.x, A.y+B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x-B.x, A.y-B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } const double eps = 1e-10; int dcmp(double x) { if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } double Area2(Point A, Point B, Point C) { return Cross(B-A, C-A); } Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad) - A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad) ); } Vector Normal(Vector A) { double L = Length(A); return Vector(-A.y/L, A.x/L); } Point GetLineIntersection(Point P, Vector v, Point Q, Vector w) { Vector u = P - Q; double t = Cross(w, u) / Cross(v, w); return P + v * t; } double DistanceToLine(Point P, Point A, Point B) { Vector v1 = B-A, v2 = P - A; return fabs(Cross(v1,v2) / Length(v1)); } double DistanceToSegment(Point P, Point A, Point B) { if(A==B) return Length(P-A); Vector v1 = B - A, v2 = P - A, v3 = P - B; if(dcmp(Dot(v1, v2)) < 0) return Length(v2); else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } Point GetLineProjection(Point P, Point A, Point B) { Vector v = B - A; return A + v * ( Dot(v, P-A) / Dot(v, v) ); } bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1), c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1); return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0; } bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) < 0; } double ConvexPolygonArea(Point* p, int n) { double area = 0; for(int i = 1; i < n-1; i++) area += Cross(p[i] - p[0], p[i + 1] - p[0]); return area / 2; } const int maxn = 300 + 10; Point P[maxn], V[maxn*maxn]; int main() { int n, cas = 1; while(scanf("%d", &n) == 1 && n) { for(int i = 0; i < n; i++) { scanf("%lf %lf", &P[i].x, &P[i].y); V[i] = P[i]; } n--; int c = n, e = n; for(int i = 0; i < n; i++) for(int j = i + 1; j < n; j++) if(SegmentProperIntersection(P[i], P[i+1], P[j], P[j+1])) V[c++] = GetLineIntersection(P[i], P[i+1] - P[i], P[j], P[j+1] - P[j]); sort(V, V + c); c = unique(V, V + c) - V;//unique为去重函数,即“去除”相邻的重复元素,返回值为最后一个顶点地址 for(int i = 0; i < c; i++) for(int j = 0; j < n; j++) if(OnSegment(V[i], P[j], P[j+1])) e++; printf("Case %d: There are %d pieces.\n", cas++, e + 2 - c); } return 0; }
UVALive - 3263 - That Nice Euler Circuit (计算几何~~)
原文地址:http://blog.csdn.net/u014355480/article/details/43607773