码迷,mamicode.com
首页 > 其他好文 > 详细

poj3177(边双连通分量+缩点)

时间:2015-02-08 14:04:27      阅读:143      评论:0      收藏:0      [点我收藏+]

标签:

 

传送门:Redundant Paths

题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走。现已有m条路,求至少要新建多少条路,使得任何两个牧场之间至少有两条独立的路。两条独立的路是指:没有公共边的路,但可以经过同一个中间顶点。

分析:在同一个边双连通分量中,任意两点都有至少两条独立路可达,因此同一个边双连通分量里的所有点可以看做同一个点。

缩点后,新图是一棵树,树的边就是原无向图的桥。

现在问题转化为:在树中至少添加多少条边能使图变为双连通图。

结论:添加边数=(树中度为1的节点数+1)/2。

技术分享
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 10010
#define FILL(a,b) (memset(a,b,sizeof(a)))
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
struct edge
{
    int v,next;
    edge(){}
    edge(int v,int next):v(v),next(next){}
}e[N<<1];
int n,step,scc,top,tot;
int head[N],dfn[N],low[N],belong[N],Stack[N],du[N];
bool instack[N];
map<int,int>mp;
void init()
{
    tot=0;top=0;scc=0;
    FILL(head,-1);FILL(dfn,0);
    FILL(low,0);FILL(instack,false);
    FILL(du,0);mp.clear();
}
void addedge(int u,int v)
{
    e[tot]=edge(v,head[u]);
    head[u]=tot++;
}
bool isHash(int u,int v)
{
    if(mp[N*u+v])return 1;
    if(mp[N*v+u])return 1;
    mp[N*u+v]=mp[N*v+u]=1;
    return 0;
}
void tarjan(int u,int f)
{
    int v;
    dfn[u]=low[u]=++step;
    Stack[top++]=u;
    instack[u]=true;
    for(int i=head[u];~i;i=e[i].next)
    {
        v=e[i].v;
        if(v==f)continue;
        if(!dfn[v])
        {
            tarjan(v,u);
            if(low[u]>low[v])low[u]=low[v];
        }
        else if(instack[v])
        {
            if(low[u]>dfn[v])low[u]=dfn[v];
        }
    }
    if(dfn[u]==low[u])
    {
        scc++;
        do
        {
            v=Stack[--top];
            instack[v]=false;
            belong[v]=scc;
        }while(v!=u);
    }
}
void solve()
{
    for(int i=1;i<=n;i++)
        if(!dfn[i])tarjan(i,i);
    for(int u=1;u<=n;u++)
    {
        for(int i=head[u];~i;i=e[i].next)
        {
            int v=e[i].v;
            if(belong[u]!=belong[v])
            {
                du[belong[u]]++;du[belong[v]]++;
            }
        }
    }
    int sum=0;
    for(int i=1;i<=scc;i++)
        if(du[i]/2==1)sum++;//因为无向图每条边都有正反两个方向,因此所有的点的度都增加了一倍
    printf("%d\n",(sum+1)/2);
}
int main()
{
    int m,u,v;
    while(scanf("%d%d",&n,&m)>0)
    {
        init();
        for(int i=1;i<=m;i++)
        {
            scanf("%d%d",&u,&v);
            if(!isHash(u,v))//去重边
            {
                addedge(u,v);
                addedge(v,u);
            }
        }
        solve();
    }
}
View Code

 

poj3177(边双连通分量+缩点)

标签:

原文地址:http://www.cnblogs.com/lienus/p/4279913.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!