码迷,mamicode.com
首页 > 其他好文 > 详细

【Coder Force】#360B - Levko and Array(DP 二分枚举)

时间:2015-02-08 21:57:20      阅读:173      评论:0      收藏:0      [点我收藏+]

标签:二分枚举   dp   

题目大题:CF上的题目还是比较容易读懂的。这道题的意思嘛,他是说,有一个不超过2000个数的数组,每一个数与后面的数的绝对值称为value,那么所有当中最大的value就是整个数组的value,现在你有k次变换,每一次可以将其中的一个数变为任何一个使得数组价值最小的数。
假如题目的价值是所有的之和,也可以用这道题的方法。
思路:
dp[i]表示的是到i这个位置,使得数组符合条件的最少变换次数。
这个符合条件就奇妙了,这个符合条件是由你定的,最终的符合条件就是答案。
简单来说:你举例一个答案,放进去,看看能不能使得整个数组的变换次数小于等于给定的K次,假如可以的话,那么这个数存起来。
接下来我们尝试更大一点可以不可以呢?可以的话重复以上操作,不可以的话就是之前的数拉。
我们枚举的范围是0-2e9,这么大的范围,傻眼了,不急,二分搜索是一个不错的方法。
好了,方法说完了。接下来是考验你DP功底的时候了,可惜这边我差劲的很,没办法给大家切入点和突破性的建议和见解了。
只能给大家讲一下这个模型,放心,等我学成之后我定给大家剖析每一道我A的题。
dp[i]=min(dp[i],dp[j]+i-j-1)(1

#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int dp[2010];
int a[2010];
const int inf = 2e9;
int n, m;

bool  bs(long long mid)
{
    for (int i = 1; i <= n; i++)
    {
        dp[i] = i - 1;
        for (int j = 1; j < i; j++)
        if (abs(a[i] - a[j]) <= (i - j)*mid)
            dp[i] = min(dp[i], dp[j] + (i - j - 1));
        if (dp[i] + n - i <= m)return true;
    }
    return false;
}
int main()
{
    while (cin >> n >> m)
    {
        for (int i = 1; i <= n; i++)
            scanf("%d", &a[i]);
        long long l = 0, r = inf;
        int ans = 0;
        while (l <=r)
        {
            long long mid = (l + r) >> 1;//int+int会超过int的范围,导致爆掉了。= =
            if (bs(mid))
            {
                ans = mid; r = mid - 1;
            }
            else l = mid + 1;
        }
        cout << ans << endl;
    }
}

【Coder Force】#360B - Levko and Array(DP 二分枚举)

标签:二分枚举   dp   

原文地址:http://blog.csdn.net/u013611908/article/details/43644863

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!