标签:
题目链接:点击打开链接
题意:
给定n ,k
下面n个数表示有一个n的排列,
每次操作等概率翻转一个区间,操作k次。
问:
k次操作后逆序数对个数的期望。
思路:
dp[i][j]表示 a[i] 在a[j] j前面的概率
初始就是 dp[i][j] = 1( i < j )
则对于翻转区间 [i, j], 出现的概率 P = 1 / ( n * (n+1) /2)
并且会导致 [i, j]内元素位置交换,枚举这次翻转的区间时所有的转移情况
#include <stdio.h> #include <string.h> #include <set> #include <map> #include <algorithm> #include <iostream> #include <vector> #include <string> #include <cmath> template <class T> inline bool rd(T &ret) { char c; int sgn; if (c = getchar(), c == EOF) return 0; while (c != '-' && (c<'0' || c>'9')) c = getchar(); sgn = (c == '-') ? -1 : 1; ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0'); ret *= sgn; return 1; } template <class T> inline void pt(T x) { if (x <0) { putchar('-'); x = -x; } if (x>9) pt(x / 10); putchar(x % 10 + '0'); } using namespace std; typedef long long ll; const int N = 105; int n, m, a[N]; double dp[N][N], tmp[N][N]; int main(){ while (cin >> n >> m){ for (int i = 1; i <= n; i++)rd(a[i]); memset(dp, 0, sizeof dp); for (int i = 1; i <= n; i++)for (int j = i + 1; j <= n; j++)dp[i][j] = 1; double P = 1.0 / ( n * (n + 1) / 2.0 ); while (m--){ memcpy(tmp, dp, sizeof dp); memset(dp, 0, sizeof dp); for (int x = 1; x <= n; x++) for (int y = x; y <= n; y++) { for (int i = 1; i <= n; i++) for (int j = i + 1; j <= n; j++){ int a = i, b = j; //(i,j)在区间[x,y]对换后所对应的点为(a,b) if (x <= a && a <= y) a = x + y - a; if (x <= b && b <= y) b = x + y - b; //当且仅当区间[x, y]包含(i,j)时i>j变成j>i(而现在对应的位置是a,b),否则是不变的 if (a > b)swap(a, b); if (x <= i && j <= y) dp[a][b] += (1 - tmp[i][j])*P; else dp[a][b] += tmp[i][j] * P; } } } double ans = 0; for (int i = 1; i <= n; i++) for (int j = i + 1; j <= n; j++) { if (a[i] > a[j]) ans += dp[i][j]; else ans += 1 - dp[i][j]; } printf("%.10f\n", ans); } return 0; }
Codeforces 513G1 513G2 Inversions problem 概率dp
标签:
原文地址:http://blog.csdn.net/qq574857122/article/details/43643135