解题思路:
先用BFS预处理出每个字母节点到其它节点的最短路径,然后套用prime算法。
#include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <algorithm> #include <queue> #include <stack> #include <vector> #include <set> #include <map> #define LL long long using namespace std; const int MAXN = 100 + 10; char G[MAXN][MAXN]; int A[MAXN][MAXN]; int N, M; int g[][2] = {{-1,0},{1,0},{0,-1},{0,1}}; int cost[MAXN][MAXN]; int t[MAXN][MAXN]; void bfs(int sx, int sy) { memset(t, -1, sizeof(t)); queue<pair<int,int> > Q; Q.push(make_pair(sx,sy)); t[sx][sy] = 0; while(!Q.empty()) { pair<int,int> u = Q.front(); Q.pop(); if(A[u.first][u.second] != -1) { cost[A[sx][sy]][A[u.first][u.second]] = t[u.first][u.second]; } for(int i=0;i<4;i++) { int x = u.first + g[i][0]; int y = u.second + g[i][1]; if(G[x][y] == '#' || t[x][y] != -1) continue; t[x][y] = t[u.first][u.second] + 1; Q.push(make_pair(x,y)); } } } const int INF = 0x3f3f3f3f; bool vis[MAXN]; int lowc[MAXN]; int prime(int n) { int ans = 0; memset(vis, 0, sizeof(vis)); vis[0] = true; for(int i=1;i<n;i++) lowc[i] = cost[0][i]; for(int i=1;i<n;i++) { int minc = INF; int p = -1; for(int j=0;j<n;j++) { if(!vis[j] && minc > lowc[j]) { minc = lowc[j]; p = j; } } if(minc == INF) return -1; ans += minc; vis[p] = true; for(int j=0;j<n;j++) { if(!vis[j] && lowc[j] > cost[p][j]) lowc[j] = cost[p][j]; } } return ans; } int main() { int T; scanf("%d", &T); while(T--) { scanf("%d%d", &M, &N); gets(G[0]); int tot = 0; for(int i=0;i<N;i++) gets(G[i]); /*for(int i=0;i<N;i++) { for(int j=0;j<M;j++) cout<<G[i][j]; cout<<endl; }*/ memset(A, -1, sizeof(A)); for(int i=0;i<N;i++) { for(int j=0;j<M;j++) { if(G[i][j] == 'S' || G[i][j] == 'A') A[i][j] = tot++; } } for(int i=0;i<N;i++) { for(int j=0;j<M;j++) { if(A[i][j] != -1) bfs(i, j); } } int ans = prime(tot); printf("%d\n", ans); } return 0; }
POJ 3026 Borg Maze(bfs + prime)
原文地址:http://blog.csdn.net/moguxiaozhe/article/details/43670821