码迷,mamicode.com
首页 > 其他好文 > 详细

POJ 3522 Slim Span (Kruskal +枚举 边权差最小的生成树)

时间:2015-02-10 00:41:26      阅读:149      评论:0      收藏:0      [点我收藏+]

标签:poj   kruskal   图论   


Slim Span

Time Limit: 5000MS
Memory Limit: 65536K
Total Submissions: 6685
Accepted: 3544

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge eE has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n ? 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n ? 1 edges of T.

技术分享
Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

技术分享
Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m
a1 b1 w1

?
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ mn(n ? 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, ?1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

Source

Japan 2007

题目链接:http://poj.org/problem?id=3522

题目大意:n个点,m条边,求一个生成树,使得其最大边权与最小边权的差最小,输出这个差值,如果不能构成生成树,输出-1

题目分析:用Kruskal的贪心思想加枚举,从第一条边开始,每次去掉一条边求生成树更新差值的最小值,详细见程序


#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int const INF = 0xffffff;
int const MAX = 105;
int n, m, ans;
int fa[MAX], rank[MAX];
bool flag, ok;
struct Edge
{
    int u, v, w;
}e[6000];

bool cmp(Edge a, Edge b)
{
    return a.w < b.w;
}

void UFset()
{
    for(int i = 0; i <= n; i++)
        fa[i] = i;
    memset(rank, 0, sizeof(rank));
}

int Find(int x)
{
    return x == fa[x] ? x : fa[x] = Find(fa[x]);
}

void Union(int a, int b)
{
    int r1 = Find(a);
    int r2 = Find(b);
    if(r1 == r2)
        return;
    if(rank[r1] > rank[r2])
        fa[r2] = r1;
    else
    {
        fa[r1] = r2;
        if(rank[r1] == rank[r2])
            rank[r1]++;
    }
}

int Kruskal(int v0)
{
    int num = 0, mi = INF, ma = -1;
    UFset();
    for(int i = v0; i < m; i++)
    {
        int u = e[i].u;
        int v = e[i].v;
        if(Find(u) != Find(v))
        {
            mi = min(mi, e[i].w); //记录最大边权
            ma = max(ma, e[i].w); //记录最小边权
            Union(u, v); 
            num++;
        }
        if(num == n - 1) //够造成一颗生成树
        {
            ok = true;   //ok表示存在一颗树
            flag = true; //flag表示当前情况下存在一棵树
            break;
        }
    }
    return ma - mi;
}

int main()
{
    while(scanf("%d %d", &n, &m) != EOF && (m + n))
    {
        ok = false;
        for(int i = 0; i < m; i++)
            scanf("%d %d %d", &e[i].u, &e[i].v, &e[i].w);
        sort(e, e + m, cmp);
        int x, y, ans = INF;
        for(int i = 0; i < m; i++) //枚举
        {
            flag = false;
            int tmp = Kruskal(i);
            if(flag)
                ans = min(ans, tmp);
        }
        printf("%d\n", !ok ? -1 : ans);
    }
}


POJ 3522 Slim Span (Kruskal +枚举 边权差最小的生成树)

标签:poj   kruskal   图论   

原文地址:http://blog.csdn.net/tc_to_top/article/details/43679975

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!