标签:
A robot is located at the top-left corner of a m x n grid(marked ‘Start‘ in the diagram below).
The robot can only move either down or right at any point in time. Therobot is trying to reach the bottom-right corner of the grid (marked ‘Finish‘in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7 grid. How many possible unique paths are there?
Note: m and n willbe at most 100.
HideTags
#pragma once #include<iostream> using namespace std; //法1:递归,超时 int uniquePaths1(int m, int n) { if (m == 2 || n == 2) return m+n-2; return uniquePaths1(m - 1, n) + uniquePaths1(m, n - 1); } //法2:数学公式 求m+n-2中取m-1的组合数 int uniquePaths2(int m, int n) { long long result = 1; int reduce = m - 1; for (int i = m - 1; i >= 1; i--) { result *= (n - 1 + i); while (reduce>0 && result%reduce == 0) { result = result / reduce; reduce--; } } //内层循环用while后,由于最后结果一定是能整除的,所以不用再加以下 /*while (reduce > 0) { result = result / reduce; }*/ return result; } void main() { cout << uniquePaths2(36, 7) << endl; cout << uniquePaths1(36, 7) << endl; system("pause"); }
62.Unique Paths (法1递归-动态规划法2数学公式)
标签:
原文地址:http://blog.csdn.net/hgqqtql/article/details/43707431