标签:
KAFKA分布式消息系统
转自:http://blog.chinaunix.net/uid-20196318-id-2420884.html
Kafka[1]是linkedin用于日志处理的分布式消息队列,linkedin的日志数据容量大,但对可靠性要求不高,其日志数据主要包括用户行为(登录、浏览、点击、分享、喜欢)以及系统运行日志(CPU、内存、磁盘、网络、系统及进程状态)。
当前很多的消息队列服务提供可靠交付保证,并默认是即时消费(不适合离线)。高可靠交付对linkedin的日志不是必须的,故可通过降低可靠性来提高性能,同时通过构建分布式的集群,允许消息在系统中累积,使得kafka同时支持离线和在线日志处理。
注:本文中发布者(publisher)与生产者(producer)可以互换,订阅者(subscriber)与消费者(consumer)可以互换。
Kafka的架构如下图所示:
Kafka存储策略
发布与订阅接口
发布消息时,kafka client先构造一条消息,将消息加入到消息集set中(kafka支持批量发布,可以往消息集合中添加多条消息,一次行发布),send消息时,client需指定消息所属的topic。
订阅消息时,kafka client需指定topic以及partition num(每个partition对应一个逻辑日志流,如topic代表某个产品线,partition代表产品线的日志按天切分的结果),client订阅后,就可迭代读取消息,如果没有消息,client会阻塞直到有新的消息发布。consumer可以累积确认接收到的消息,当其确认了某个offset的消息,意味着之前的消息也都已成功接收到,此时broker会更新zookeeper上地offset registry(后面会讲到)。
高效的数据传输
无状态broker
Consumer group
Zookeeper 协调控制
1. 管理broker与consumer的动态加入与离开。
2. 触发负载均衡,当broker或consumer加入或离开时会触发负载均衡算法,使得一
个consumer group内的多个consumer的订阅负载平衡。
3. 维护消费关系及每个partion的消费信息。
Zookeeper上的细节:
消息交付保证
Linkedin的应用环境
如下图,左边的应用于日志数据的在线实时处理,右边的应用于日志数据的离线分析(现将日志pull至hadoop或DWH中)。
Kafka的性能
测试环境: 2 Linux machines, each with 8 2GHz cores, 16GB of memory, 6 disks with RAID 10. The two machines are connected with a 1Gb network link. One of the machines was used as the broker and the other machine was used as the producer or the consumer.
测试评价(by me):(1)环境过于简单,不足以说明问题。(2)对于producer持续的波动没有进行分析。(3)只有两台机器zookeeper都省了??
测试结果:如下图,完胜其他的message queue,单条消息发送(每条200bytes),能到50000messages/sec,50条batch方式发送,平均为400000messages/sec.
Kafka未来研究方向
1. 数据压缩(节省网络带宽及存储空间)
2. Broker多副本
3. 流式处理应用
参考资料
【1】 http://research.microsoft.com/en-us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf
【2】 https://cwiki.apache.org/KAFKA/kafka-papers-and-presentations.data/Kafka-netdb-06-2011.pdf
标签:
原文地址:http://www.cnblogs.com/houkui/p/4285443.html