标签:
题目链接:
http://poj.org/problem?id=3592
题目大意:
有一个N*M的矩阵地图,矩阵中用了多种字符代表不同的地形,如果是数字X(0~9),则表示
该区域为矿区,有X单位的矿产。如果是"*",则表示该区域为传送点,并且对应唯一一个目标
坐标。如果是"#",,则表示该区域为山区,矿车不能进入。现在矿车的出发点在坐标(0,0)点。
并且(0,0)点一定不是"#"区域。矿车只能向右走、向下走或是遇到传送点的时候可以传送到
指定位置。那么问题来了:矿车最多能采到多少矿。
思路:
如果把N*M个矩阵单位看做是N*M个点,编号为0~N*M。然后从一个坐标到另一个坐标看做
是两点之间的边。到达的坐标所拥有的矿产为边的权值。那么问题就变成了:矿车从节点0出发,
所能达到的最长路径。但是除了向右走和向下走的边,考虑到还有传送点和目标坐标构成的边,
原图上就会多了很多回退边,构成了很多的有向环。有向环的出现,使得矿车能够采到的矿产
增多了一部分,只要能走到有向环内,则该环内所有点的矿产都能被采到。但是问题也出来了,
如果不做处理,直接搜索路径,那么矿车很可能会走进环内不出来。
于是想到了缩点,把有向环缩为一个点,也就是强连通分量缩点。并记录强连通分量中的总矿产
值。缩点后,原图就变成了一个有向无环图(DAG)。然后重新建立一个新图(DAG),对新图求最
长路径(用SPFA算法),得到源点(0,0)到各点的最长路径。从中找出最长的路径,就是所求的结
果。
需要注意很多点:
1."*"区域能够传送到"#"区域。。。
2.矿车开始的地方是(0,0)
3.有多组数据,一定注意数据的清空
AC代码:
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<queue> using namespace std; const int MAXN = 1610; const int MAXM = 50050; const int INF = 0xffffff0; struct EdgeNode { int to; int next; }Edges[MAXM],Edges1[MAXM]; //存放原图,新图 int Head[MAXN],Head1[MAXN]; int vis[MAXN],vist[MAXN]; //标记访问 int dfn[MAXN],low[MAXN],belong[MAXN]; //开始访问时间次序,栈中最早访问时间 int Stack[MAXN]; //缩点用到的栈 int m,id,ip,scc,lay,N,M; //id原图边数,ip新图边数 int cost[MAXN],sum[MAXN]; //cost为原图每点的值,sum为强连通分量的值 char Map[50][50]; //存放原图 int Dist[MAXN],outque[MAXN]; void AddEdges(int u,int v) //原图加边 { Edges[id].to = v; Edges[id].next = Head[u]; Head[u] = id++; } void AddEdges1(int u,int v) //新图加边 { Edges1[ip].to = v; Edges1[ip].next = Head1[u]; Head1[u] = ip++; } int TarBFS(int pos) { int v; vis[pos] = 1; low[pos] = dfn[pos] = ++lay; Stack[m++] = pos; for(int i = Head[pos]; i != -1; i = Edges[i].next) { int v = Edges[i].to; if( !dfn[v] ) { TarBFS(v); low[pos] = min(low[pos], low[v]); } else if( vis[v] ) low[pos] = min(low[pos], low[v]); } if(dfn[pos] == low[pos]) { ++scc; do { v = Stack[--m]; sum[scc] += cost[v]; belong[v] = scc; vis[v] = 0; }while(v != pos); } return 0; } void ReBuildMap() //重建新图(DAG) { ip = 0; for(int u = 0; u < N*M; ++u) for(int k = Head[u]; k != -1; k = Edges[k].next) { int v = Edges[k].to; if(belong[u] != belong[v]) AddEdges1(belong[u],belong[v]); } } void SPFA() //求最长路 { memset(vist,0,sizeof(vist)); memset(Dist,0,sizeof(Dist)); queue<int> Q; Q.push(belong[0]); vist[belong[0]] = 1; Dist[belong[0]] = sum[belong[0]]; while( !Q.empty() ) { int u = Q.front(); Q.pop(); vist[u] = 0; for(int i = Head1[u]; i != -1; i = Edges1[i].next) { int v = Edges1[i].to; if(Dist[v] < Dist[u] + sum[v]) { Dist[v] = Dist[u] + sum[v]; if( !vist[v] ) { vist[v] = 1; Q.push(v); } } } } } int main() { int T,x,y; scanf("%d",&T); while(T--) { scanf("%d%d",&N,&M); memset(Head,-1,sizeof(Head)); memset(Head1,-1,sizeof(Head1)); memset(cost,0,sizeof(cost)); memset(vis,0,sizeof(vis)); memset(low,0,sizeof(low)); memset(dfn,0,sizeof(dfn)); memset(sum,0,sizeof(sum)); for(int i = 0; i < N; ++i) scanf("%s",Map[i]); for(int i = 0; i < N; ++i) { for(int j = 0; j < M; ++j) { if(Map[i][j] != '#') { if(i+1 < N && Map[i+1][j] != '#') //向下走 AddEdges(i*M+j,(i+1)*M+j); if(j+1 < M && Map[i][j+1] != '#') //向右走 AddEdges(i*M+j,i*M+j+1); cost[i*M+j] = Map[i][j] - '0'; if(Map[i][j] == '*') { cost[i*M+j] = 0; scanf("%d%d",&x,&y); if(Map[x][y] != '#') AddEdges(i*M+j,x*M+y); } } } } scc = id = m = lay = 0; for(int i = 0; i < N*M; ++i) if(!dfn[i]) TarBFS(i); ReBuildMap(); SPFA(); int ans = -1; for(int i = 1; i <= scc; ++i) if(ans < Dist[i]) ans = Dist[i]; printf("%d\n",ans); } return 0; } /* 100 10 10 12345678*0 2345678901 345678*012 456*890123 5678901234 6789*12345 7890123456 890*234567 901234*678 0123*56789 2 2 3 3 4 4 5 5 6 6 7 7 8 8 3 3 *1* 2*1 11* 1 1 2 2 1 3 1 1 答案为: 124 5 */
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<queue> #include<stack> using namespace std; const int MAXN = 1610; const int MAXM = 50050; const int INF = 0xffffff0; struct EdgeNode { int to; int next; }Edges[MAXM],Edges1[MAXM]; int Head[MAXN],Head1[MAXN]; int vis[MAXN],vist[MAXN]; //标记访问 int dfn[MAXN],low[MAXN]; //开始访问时间次序,栈中最早访问时间 int Stack[MAXN]; //缩点用到的栈 int m,id,ip,scc,lay,N,M; //id原图边数,ip新图边数 int cost[MAXN],sum[MAXN]; //cost为原图每点的值,sum为强连通分量的值 char Map[50][50]; //存放原图 int Dist[MAXN],outque[MAXN]; stack<int> S; void AddEdges(int u,int v) //原图加边 { Edges[id].to = v; Edges[id].next = Head[u]; Head[u] = id++; } void AddEdges1(int u,int v) { Edges1[ip].to = v; Edges1[ip].next = Head1[u]; Head1[u] = ip++; } int TarBFS(int pos) { vis[pos] = 1; low[pos] = dfn[pos] = lay++; S.push(pos); for(int i = Head[pos]; i != -1; i = Edges[i].next) { if( dfn[Edges[i].to] == 0) { TarBFS(Edges[i].to); if(low[Edges[i].to] < low[pos]) low[pos] = low[Edges[i].to]; } else if( vis[Edges[i].to] == 1 && dfn[Edges[i].to] < low[pos]) low[pos] = dfn[Edges[i].to]; } int v; if(dfn[pos] == low[pos]) { scc++; do { v = S.top(); S.pop(); sum[scc] += cost[v]; low[v] = scc; vis[v] = 2; }while(v != pos); } return 0; } void Tarjan() { m = 0; for(int i = 0; i < N*M; ++i) { if(vis[i] == 0) TarBFS(i); } } void ReBuildMap() { ip = 0; for(int i = 0; i < N*M; ++i) for(int k = Head[i]; k != -1; k = Edges[k].next) if(low[i] != low[Edges[k].to]) AddEdges1(low[i],low[Edges[k].to]); } int SPFA() { memset(vist,0,sizeof(vist)); memset(outque,0,sizeof(outque)); memset(Dist,0,sizeof(Dist)); queue<int> Q; Q.push(low[0]); vist[low[0]] = 1; Dist[low[0]] = sum[low[0]]; while( !Q.empty() ) { int u = Q.front(); Q.pop(); vist[u] = 0; outque[u]++; if(outque[u] > scc) return false; for(int i = Head1[u]; i != -1; i = Edges1[i].next) { if(Dist[u] + sum[Edges1[i].to] > Dist[Edges1[i].to]) { Dist[Edges1[i].to] = Dist[u] + sum[Edges1[i].to]; if( !vist[Edges1[i].to] ) { vist[Edges1[i].to] = 1; Q.push(Edges1[i].to); } } } } return true; } int main() { int T,x,y; scanf("%d",&T); while(T--) { memset(Head,-1,sizeof(Head)); memset(Head1,-1,sizeof(Head1)); memset(cost,0,sizeof(cost)); memset(vis,0,sizeof(vis)); memset(low,0,sizeof(low)); memset(dfn,0,sizeof(dfn)); memset(sum,0,sizeof(sum)); memset(Edges,0,sizeof(Edges)); memset(Edges1,0,sizeof(Edges1)); memset(Map,0,sizeof(Map)); scc = id = 0; lay = 1; scanf("%d%d",&N,&M); for(int i = 0; i < N; ++i) scanf("%s",Map[i]); for(int i = 0; i < N; ++i) { for(int j = 0; j < M; ++j) { if(Map[i][j] != '#') { if(i+1 < N && Map[i+1][j] != '#') //向下走 AddEdges(i*M+j,(i+1)*M+j); if(j+1 < M && Map[i][j+1] != '#') //向右走 AddEdges(i*M+j,i*M+j+1); cost[i*M+j] = Map[i][j] - '0'; if(Map[i][j] == '*') { cost[i*M+j] = 0; scanf("%d%d",&x,&y); if(Map[x][y] != '#') AddEdges(i*M+j,x*M+y); } } } } Tarjan(); ReBuildMap(); SPFA(); int ans = -1; for(int i = 1; i <= scc; ++i) if(ans < Dist[i]) ans = Dist[i]; printf("%d\n",ans); } return 0; }
POJ3592 Instantaneous Transference【强连通分量】【最长路】
标签:
原文地址:http://blog.csdn.net/lianai911/article/details/43738299