动态规划的基本思想:
将一个问题分解为子问题递归求解,且将中间结果保存以避免重复计算。通常用来求最优解,且最优解的局部也是最优的。求解过程产生多个决策序列,下一步总是依赖上一步的结果,自底向上的求解。
动态规划算法可分解成从先到后的4个步骤:
1. 描述一个最优解的结构,寻找子问题,对问题进行划分。
2. 定义状态。往往将和子问题相关的各个变量的一组取值定义为一个状态。某个状态的值就是这个子问题的解(若有k个变量,一般用K维的数组存储各个状态下的解,并可根 据这个数组记录打印求解过程。)。
3. 找出状态转移方程。一般是从一个状态到另一个状态时变量值改变。
4.以“自底向上”的方式计算最优解的值。
5. 从已计算的信息中构建出最优解的路径。(最优解是问题达到最优值的一组解)
其中步骤1~4是动态规划求解问题的基础,如果题目只要求最优解的值,则步骤5可以省略。
01背包问题具体例子:
假设现有容量10kg的背包,另外有3个物品,分别为a1,a2,a3。物品a1重量为3kg,价值为4;物品a2重量为4kg,价值为5;物品a3重量为5kg,价值为6。将哪些物品放入背包可使得背包中的总价值最大?
这个问题有两种解法,动态规划和贪婪算法。本文仅涉及动态规划。
先不套用动态规划的具体定义,试着想,碰见这种题目,怎么解决?
首先想到的,一般是穷举法,一个一个地试,对于数目小的例子适用,如果容量增大,物品增多,这种方法就无用武之地了。
其次,可以先把价值最大的物体放入,这已经是贪婪算法的雏形了。如果不添加某些特定条件,结果未必可行。
最后,就是动态规划的思路了。先将原始问题一般化,欲求背包能够获得的总价值,即欲求前i个物体放入容量为m(kg)背包的最大价值c[i][m]——使用一个数组来存储最大价值,当m取10,i取3时,即原始问题了。而前i个物体放入容量为m(kg)的背包,又可以转化成前(i-1)个物体放入背包的问题。下面使用数学表达式描述它们两者之间的具体关系。
表达式中各个符号的具体含义。
w[i] : 第i个物体的重量;
p[i] : 第i个物体的价值;
c[i][m] : 前i个物体放入容量为m的背包的最大价值;
c[i-1][m] : 前i-1个物体放入容量为m的背包的最大价值;
c[i-1][m-w[i]] : 前i-1个物体放入容量为m-w[i]的背包的最大价值;
由此可得:
c[i][m]=max{c[i-1][m-w[i]]+pi , c[i-1][m]}(下图将给出更具体的解释)
根据上式,对物体个数及背包重量进行递推,列出一个表格(见下表),表格来自(http://blog.csdn.net/fg2006/article/details/6766384?reload) ,当逐步推出表中每个值的大小,那个最大价值就求出来了。推导过程中,注意一点,最好逐行而非逐列开始推导,先从编号为1的那一行,推出所有c[1][m]的值,再推编号为2的那行c[2][m]的大小。这样便于理解。
#include<iostream> #include<cstdio> #include<string> #define max(a,b) a>b ? a : b using namespace std; int c[11][101]; //物品最多为10个,容量最大为100kg int knapsack(int m,int n) { int i,j,w[11],p[11]; for(i=1;i<n+1;i++) { scanf("\n%d%d",&w[i],&p[i]); } memset(c, 0, sizeof(c)); for(i=1;i<n+1;i++) { for(j=1;j<m+1;j++) { if(w[i]<=j) { c[i][j] = max(c[i-1][j],c[i-1][j-w[i]]+p[i]); ////放还是不放的选择 } else { c[i][j]=c[i-1][j]; } } } return(c[n][m]); } int main() { int m,n;int i,j; printf("input the max capacity and the number of the goods:\n"); scanf("%d%d",&m,&n); printf("Input each one(weight and value):\n"); printf("%d",knapsack(m,n)); printf("\n"); for (i = 1; i <= n; i++) { for (j = 1; j <= m; j++) { printf("%d ", c[i][j]); } printf("\n"); } printf("%d\n", c[n][m]); }
问题的特点是:每种物品一件,可以选择放1或不放0。
用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
这个方程非常重要,据说基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以详细的查了一下这个方程的含义:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
在有的地方看到的背包问题题目中,有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。
原文地址:http://blog.csdn.net/u014265347/article/details/43741527