标签:acm
#include <iostream> #include <cstring> #include <cstdio> #include <cstdlib> #include <algorithm> #include <vector> #include <queue> #include <stack> #include <set> #include <map> #include <cmath> #define LL long long using namespace std; const int maxn = 10000 + 10; const int INF = 0x3f3f3f3f; struct Edge { int from, to, cap, flow, cost; Edge(int u, int v, int c, int f, int w) : from(u), to(v), cap(c), flow(f), cost(w) { } }; int n; vector<Edge>edges; vector<int>G[maxn]; int inq[maxn]; int d[maxn]; int p[maxn]; int a[maxn]; void init() { for(int i=0;i<n;i++) G[i].clear(); edges.clear(); } void AddEdge(int from, int to, int cap, int cost) { edges.push_back(Edge(from,to,cap,0,cost)); edges.push_back(Edge(to,from,0,0,-cost)); int M = edges.size(); G[from].push_back(M-2); G[to].push_back(M-1); } bool SPFA(int s, int t, int& flow, LL& cost) { for(int i=0;i<=n+1;i++) d[i] = INF; memset(inq, 0, sizeof(inq)); d[s] = 0; inq[s] = 1; p[s] = 0; a[s] = INF; queue<int>Q; Q.push(s); while(!Q.empty()) { int u = Q.front();Q.pop(); inq[u] = 0; for(int i=0;i<G[u].size();i++) { Edge& e = edges[G[u][i]]; if(e.cap > e.flow && d[e.to] > d[u] + e.cost) { d[e.to] = d[u] + e.cost; p[e.to] = G[u][i]; a[e.to] = min(a[u], e.cap - e.flow); if(!inq[e.to]){Q.push(e.to);inq[e.to] = 1;} } } } if(d[t] == INF) return false; flow += a[t]; cost += (LL) d[t] * (LL) a[t]; for(int u=t;u!=s;u=edges[p[u]].from) { edges[p[u]].flow += a[t]; edges[p[u]^1].flow -= a[t]; } return true; } int MincostMaxflow(int s, int t, LL& cost) { int flow = 0; cost = 0; while(SPFA(s,t,flow,cost)); return flow; } int N, K; int W[100][100]; int main() { while(scanf("%d%d", &N, &K)!=EOF) { for(int i=1;i<=N;i++) { for(int j=1;j<=N;j++) { scanf("%d", &W[i][j]); } } n = 2 * N * N + 2; init(); AddEdge(0,1,K,0); AddEdge(2*N*N,n-1,INF,0); for(int i=1;i<=N;i++) { for(int j=1;j<=N;j++) { AddEdge(N*i-N+j,N*i-N+j+N*N,1,-W[i][j]); AddEdge(N*i-N+j,N*i-N+j+N*N,INF,0); } } for(int i=1;i<=N;i++) { for(int j=1;j<=N;j++) { if(j < N) { AddEdge(N*i-N+j+N*N, N*i-N+j+1,INF,0); } if(i < N) { AddEdge(N*i-N+j+N*N, N*i+j,INF,0); } } } LL cost = 0; int ans = MincostMaxflow(0,n-1,cost); printf("%lld\n", -cost); } return 0; }
POJ 3422 kaka's matrix trvals(费用流)
标签:acm
原文地址:http://blog.csdn.net/moguxiaozhe/article/details/43765147