The least common multiple (LCM) of a set of positive integers is the smallest positive integer which is divisible by all the numbers in the set. For example, the LCM of 5, 7 and 15 is 105.
Input will consist of multiple problem instances. The first line of the input will contain a single integer indicating the number of problem instances. Each instance will consist of a single line of the form m n1 n2 n3 ... nm where
m is the number of integers in the set and n1 ... nm are the integers. All integers will be positive and lie within the range of a 32-bit integer.
For each problem instance, output a single line containing the corresponding LCM. All results will lie in the range of a 32-bit integer.
2
3 5 7 15
6 4 10296 936 1287 792 1
#include<iostream>
using namespace std;
int gys(int a,int b)
{
/* int i,result; //此方法超时
for(i=1;i<=a;i++)
{
if(a%i==0 && b%i==0)
result=i;
}
result=a*b/result;
return result;*/
if(b==0) return a; //欧几里得求最大公约数
return gys(b,a%b);
}
int main()
{
int T,n,i,a[1000];
cin>>T;
while(T--)
{
cin>>n;
for(i=0;i<n;i++)
cin>>a[i];
for(i=0;i<n-1;i++) //x x x x x
{
a[i+1]=a[i]/gys(a[i],a[i+1])*a[i+1];
}
cout<<a[i]<<endl;
}
return 0;
}