码迷,mamicode.com
首页 > 其他好文 > 详细

HDU 3127 WHUgirls【二维完全背包】

时间:2015-02-13 17:52:25      阅读:192      评论:0      收藏:0      [点我收藏+]

标签:

题意:给出一个长为a,宽为b的布,再给出n个围巾的规格(长x,宽y,价值c),问怎样裁剪能够得到最大的价值。

----第一次做的时候不会---然后放到今天做--发现还是不会---于是又--看题解了----@_@===

因为相同规格的围巾可以重复剪多次,且围巾的长和宽相当于两个约束,所以可以转换为二维费用的完全背包问题。

然后就是围巾的裁剪

第一种 横着减

技术分享
裁切线分为两种
对于左上的第一个图,当减去长为x,宽有长为y的一个矩形之后,剩余的面积之和分别由长为i-x,宽为y;长为i,宽为j-y的两个矩形组成。
对于左上的第二个图,当减去长为x,宽有长为y的一个矩形之后,剩余的面积之和分别由长为i-x,宽为j;长为x,宽为j-y的两个矩形组成。

第二种 竖着减 和第一种的方法类似--

技术分享

然后就可以写出状态转移方程----

技术分享
#include<iostream>  
#include<cstdio>  
#include<cstring>  
#include<algorithm> 
#define maxn 1005 
using namespace std;
struct node
{
    int x,y,c;
} a[maxn];
int dp[maxn][maxn];
int main()
{
    int ncase,n,c,d,i,j,k;
    scanf("%d",&ncase);
    while(ncase--)
    {
        scanf("%d %d %d",&n,&c,&d);
        for(i=0;i<n;i++)
        scanf("%d %d %d",&a[i].x,&a[i].y,&a[i].c);
        memset(dp,0,sizeof(dp));
        
        for(i=0;i<=c;i++)
        {
            for(j=0;j<=d;j++)
            {
                for(k=0;k<n;k++)
                {
                    if(i>=a[k].x&&j>=a[k].y)
                    dp[i][j]=max(dp[i][j],max(dp[i-a[k].x][a[k].y]+dp[i][j-a[k].y]+a[k].c,dp[i-a[k].x][j]+dp[a[k].x][j-a[k].y]+a[k].c));
                    if(i>=a[k].y&&j>=a[k].x)
                    dp[i][j]=max(dp[i][j],max(dp[i-a[k].y][j]+dp[a[k].y][j-a[k].x]+a[k].c,dp[i][j-a[k].x]+dp[i-a[k].y][a[k].x]+a[k].c));

                }
            }
        }
        printf("%d\n",dp[c][d]);
    }
}
View Code

 

HDU 3127 WHUgirls【二维完全背包】

标签:

原文地址:http://www.cnblogs.com/wuyuewoniu/p/4290545.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!