1.题目描述:点击打开链接
2.解题思路:本题利用树状dp解决,不过其实也可以理解为用贪心法解决的。设d(u)表示u给上级发信最少需要的工人个数,假设u有k个子结点,那么根据题意,至少需要c=(k*T-1)/100+1个直属下属发信才行。而每个直属下属的工人数是di,那么这时只需要把di由小到大排序,然后把前c个相加就是d(u)了。最终的答案是d(0)。由于需要排序,因此总的时间复杂度是O(N*logN)。最后附上一篇带有大量宏定义的参考代码,真心给跪,第一次见这么多的宏定义,Orz。
3.代码:
#define _CRT_SECURE_NO_WARNINGS
#include<iostream>
#include<algorithm>
#include<string>
#include<sstream>
#include<set>
#include<vector>
#include<stack>
#include<map>
#include<queue>
#include<deque>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<ctime>
#include<functional>
using namespace std;
const int maxn = 1e5 + 10;
vector<int>sons[maxn];//存放i的所有直属下属
int n, T;
int dp(int u)
{
if (sons[u].empty())return 1;//工人
int k = sons[u].size();
vector<int>d; //存放u的直属下属的工人数
for (int i = 0; i < k; i++)
d.push_back(dp(sons[u][i]));
sort(d.begin(), d.end());
int c = (k*T - 1) / 100 + 1;
int ans = 0;
for (int i = 0; i < c; i++)
ans += d[i];
return ans;
}
int main()
{
//freopen("test.txt", "r", stdin);
while (scanf("%d%d", &n, &T) == 2 && n&&T)
{
memset(sons, 0, sizeof(sons));
int x;
for (int i = 1; i <= n; i++)
{
scanf("%d", &x);
sons[x].push_back(i);
}
int ans;
ans = dp(0);
printf("%d\n", ans);
}
return 0;
}
参考代码:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <string>
#include <algorithm>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <queue>
#include <cmath>
#include <cstdlib>
using namespace std;
#define PB push_back
#define SIZE(x) (int)x.size()
#define clr(x,y) memset(x,y,sizeof(x))
#define RS(n) scanf ("%s", n)
#define RD(n) scanf ("%d", &n)
#define RF(n) scanf ("%lf", &n)
#define ALL(t) (t).begin(),(t).end()
#define FOR(i,n,m,step) for (int i = n; i <= m; i += step)
#define ROF(i,n,m,step) for (int i = n; i >= m; i -= step)
#define IT iterator
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef vector<int> vint;
typedef vector<long long> vll;
typedef vector<string> vstring;
typedef pair<int, int> PII;
/*****************************************************************/
const int maxn = 100000 + 5;
vint sons[maxn];
int T;
int dp(int u) {
if (sons[u].empty()) return 1;
int k = sons[u].size();
vint d;
FOR(i,0,k-1,1) d.PB(dp(sons[u][i]));
sort(d.begin(),d.end());
int c = (k * T - 1) / 100 + 1;
int ans = 0;
FOR(i,0,c - 1,1) ans += d[i];
return ans;
}
int main() {
int n;
while (cin>>n>>T,n) {
FOR(i,0,n,1) sons[i].clear();
FOR(i,1,n,1) {
int tmp;
RD(tmp);
sons[tmp].PB(i);
}
cout<<dp(0)<<endl;
}
}
原文地址:http://blog.csdn.net/u014800748/article/details/43818805