标签:linux-uart
linux串口驱动实现起来比较简单,只需编写下面这三个结构体即可,其它功能实现交给内核处理。
struct uart_driver {
struct module *owner;
const char *driver_name;
const char *dev_name;
int major;
int minor;
int nr;
struct console *cons;
/*
* these are private; the low level driver should not
* touch these; they should be initialised to NULL
*/
struct uart_state *state;
struct tty_driver *tty_driver;
};
struct s3c24xx_uart_port {
unsigned char rx_claimed;
unsigned char tx_claimed;
unsigned int pm_level;
unsigned long baudclk_rate;
unsigned int rx_irq;
unsigned int tx_irq;
struct s3c24xx_uart_info *info;
struct s3c24xx_uart_clksrc *clksrc;
struct clk *clk;
struct clk *baudclk;
struct uart_port port;
struct notifier_block freq_transition;
};
struct uart_ops {
unsigned int (tx_empty)(struct uart_port );
void (set_mctrl)(struct uart_port , unsigned int mctrl);
unsigned int (get_mctrl)(struct uart_port );
void (stop_tx)(struct uart_port );
void (start_tx)(struct uart_port );
void (send_xchar)(struct uart_port , char ch);
void (stop_rx)(struct uart_port );
void (enable_ms)(struct uart_port );
void (break_ctl)(struct uart_port , int ctl);
int (startup)(struct uart_port );
void (shutdown)(struct uart_port );
void (flush_buffer)(struct uart_port );
void (set_termios)(struct uart_port , struct ktermios *new,
struct ktermios *old);
void (set_ldisc)(struct uart_port );
void (pm)(struct uart_port , unsigned int state,
unsigned int oldstate);
int (set_wake)(struct uart_port , unsigned int state);
/*
* Return a string describing the type of the port
*/
const char *(*type)(struct uart_port *);
/*
* Release IO and memory resources used by the port.
* This includes iounmap if necessary.
*/
void (*release_port)(struct uart_port *);
/*
* Request IO and memory resources used by the port.
* This includes iomapping the port if necessary.
*/
int (*request_port)(struct uart_port *);
void (*config_port)(struct uart_port *, int);
int (*verify_port)(struct uart_port *, struct serial_struct *);
int (*ioctl)(struct uart_port *, unsigned int, unsigned long);
void (*poll_put_char)(struct uart_port *, unsigned char);
int (*poll_get_char)(struct uart_port *);
};
////////////////////////////以下程序为转载///////////////////////////////
/* 这里将串口的主设备号设为0,则串口设备编号由内核动态分配;你也可指定串口的设备编号 */
/* 串口发送中断号 */
/* 串口接收中断号 */
/* 允许串口接收字符的标志 */
/* 允许串口发送字符的标志 */
/* 获取寄存器地址 */
/* 读8位宽的寄存器 */
/* 读32位宽的寄存器 */
/* 写8位宽的寄存器 */
do { iowrite8(val, portaddr(port, reg)); } while(0)
/* 写32位宽的寄存器 */
do { iowrite32(val, portaddr(port, reg)); } while(0)
/* 禁止串口发送数据 */
static void gprs_uart_stop_tx(struct uart_port *port)
{
if (tx_enabled(port)) /* 若串口已启动发送 */
{
disable_irq(TX_IRQ(port)); /* 禁止发送中断 */
tx_enabled(port) = 0; /* 设置串口为未启动发送 */
}
}
/* 使能串口发送数据 */
static void gprs_uart_start_tx(struct uart_port *port)
{
if (!tx_enabled(port)) /* 若串口未启动发送 */
{
enable_irq(TX_IRQ(port)); /* 使能发送中断 */
tx_enabled(port) = 1; /* 设置串口为已启动发送 */
}
}
/* 禁止串口接收数据 */
static void gprs_uart_stop_rx(struct uart_port *port)
{
if (rx_enabled(port)) /* 若串口已启动接收 */
{
disable_irq(RX_IRQ(port)); /* 禁止接收中断 */
rx_enabled(port) = 0; /* 设置串口为未启动接收 */
}
}
/* 使能modem的状态信号 */
static void gprs_uart_enable_ms(struct uart_port *port)
{
}
/* 串口的Tx FIFO缓存是否为空 */
static unsigned int gprs_uart_tx_empty(struct uart_port *port)
{
int ret = 1;
unsigned long ufstat = rd_regl(port, S3C2410_UFSTAT);
unsigned long ufcon = rd_regl(port, S3C2410_UFCON);
if (ufcon & S3C2410_UFCON_FIFOMODE) /* 若使能了FIFO */
{
if ((ufstat & S3C2410_UFSTAT_TXMASK) != 0 || /* 0 <FIFO <=15 */
(ufstat & S3C2410_UFSTAT_TXFULL)) /* FIFO满 */
ret = 0;
}
else /* 若未使能了FIFO,则判断发送缓存和发送移位寄存器是否均为空 */
{
ret = rd_regl(port, S3C2410_UTRSTAT) & S3C2410_UTRSTAT_TXE;
}
return ret;
}
/* 获取串口modem控制,因为uart2无modem控制,所以CTS、DSR直接返回有效 */
static unsigned int gprs_uart_get_mctrl(struct uart_port *port)
{
return (TIOCM_CTS | TIOCM_DSR | TIOCM_CAR);
}
/* 设置串口modem控制 */
static void gprs_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
{
}
/* 设置break信号 */
static void gprs_uart_break_ctl(struct uart_port *port, int break_state)
{
unsigned long flags;
unsigned int ucon;
spin_lock_irqsave(&port->lock, flags);
ucon = rd_regl(port, S3C2410_UCON);
if (break_state)
ucon |= S3C2410_UCON_SBREAK;
else
ucon &= ~S3C2410_UCON_SBREAK;
wr_regl(port, S3C2410_UCON, ucon);
spin_unlock_irqrestore(&port->lock, flags);
}
/* 返回Rx FIFO已存多少数据 */
static int gprs_uart_rx_fifocnt(unsigned long ufstat)
{
/* 若Rx FIFO已满,返回FIFO的大小 */
if (ufstat & S3C2410_UFSTAT_RXFULL)
return GPRS_UART_FIFO_SIZE;
/* 若FIFO未满,返回Rx FIFO已存了多少字节数据 */
return (ufstat & S3C2410_UFSTAT_RXMASK) >> S3C2410_UFSTAT_RXSHIFT;
}
/* 串口接收中断处理函数,获取串口接收到的数据,并将这些数据递交给行规则层 */
static irqreturn_t gprs_uart_rx_chars(int irq, void *dev_id)
{
struct uart_port *port = dev_id;
struct tty_struct *tty = port->info->tty;
unsigned int ufcon, ch, flag, ufstat, uerstat;
int max_count = 64;
/* 循环接收数据,最多一次中断接收64字节数据 */
while (max_count-- > 0)
{
ufcon = rd_regl(port, S3C2410_UFCON);
ufstat = rd_regl(port, S3C2410_UFSTAT);
/* 若Rx FIFO无数据了,跳出循环 */
if (gprs_uart_rx_fifocnt(ufstat) == 0)
break;
/* 读取Rx error状态寄存器 */
uerstat = rd_regl(port, S3C2410_UERSTAT);
/* 读取已接受到的数据 */
ch = rd_regb(port, S3C2410_URXH);
/* insert the character into the buffer */
/* 先将tty标志设为正常 */
flag = TTY_NORMAL;
/* 递增接收字符计数器 */
port->icount.rx++;
/* 判断是否存在Rx error
* if (unlikely(uerstat & S3C2410_UERSTAT_ANY))等同于
* if (uerstat & S3C2410_UERSTAT_ANY)
* 只是unlikely表示uerstat & S3C2410_UERSTAT_ANY的值为假的可能性大一些
* 另外还有一个likely(value)表示value的值为真的可能性更大一些
*/
if (unlikely(uerstat & S3C2410_UERSTAT_ANY))
{
/* 若break错误,递增icount.brk计算器 */
if (uerstat & S3C2410_UERSTAT_BREAK)
{
port->icount.brk++;
if (uart_handle_break(port))
goto ignore_char;
}
/* 若frame错误,递增icount.frame计算器 */
if (uerstat & S3C2410_UERSTAT_FRAME)
port->icount.frame++;
/* 若overrun错误,递增icount.overrun计算器 */
if (uerstat & S3C2410_UERSTAT_OVERRUN)
port->icount.overrun++;
/* 查看我们是否关心该Rx error
* port->read_status_mask保存着我们感兴趣的Rx error status
*/
uerstat &= port->read_status_mask;
/* 若我们关心该Rx error,则将flag设置为对应的error flag */
if (uerstat & S3C2410_UERSTAT_BREAK)
flag = TTY_BREAK;
else if (uerstat & S3C2410_UERSTAT_PARITY)
flag = TTY_PARITY;
else if (uerstat & ( S3C2410_UERSTAT_FRAME | S3C2410_UERSTAT_OVERRUN))
flag = TTY_FRAME;
}
/* 处理sys字符 */
if (uart_handle_sysrq_char(port, ch))
goto ignore_char;
/* 将接收到的字符插入到tty设备的flip缓冲 */
uart_insert_char(port, uerstat, S3C2410_UERSTAT_OVERRUN, ch, flag);
ignore_char:
continue;
}
/* 刷新tty设备的flip缓冲,将接受到的数据传给行规则层 */
tty_flip_buffer_push(tty);
return IRQ_HANDLED;
}
/* 串口发送中断处理函数,将用户空间的数据(保存在环形缓冲xmit里)发送出去 */
static irqreturn_t gprs_uart_tx_chars(int irq, void *dev_id)
{
struct uart_port *port = dev_id;
struct circ_buf xmit = &port->info->xmit; / 获取环线缓冲 */
int count = 256;
/* 若设置了xChar字符 */
if (port->x_char)
{
/* 将该xChar发送出去 */
wr_regb(port, S3C2410_UTXH, port->x_char);
/* 递增发送计数 */
port->icount.tx++;
/* 清除xChar */
port->x_char = 0;
/* 退出中断处理 */
goto out;
}
/* 如果没有更多的字符需要发送(环形缓冲为空),
* 或者uart Tx已停止,
* 则停止uart并退出中断处理函数
*/
if (uart_circ_empty(xmit) || uart_tx_stopped(port))
{
gprs_uart_stop_tx(port);
goto out;
}
/* 循环发送数据,直到环形缓冲为空,最多一次中断发送256字节数据 */
while (!uart_circ_empty(xmit) && count-- > 0)
{
/* 若Tx FIFO已满,退出循环 */
if (rd_regl(port, S3C2410_UFSTAT) & S3C2410_UFSTAT_TXFULL)
break;
/* 将要发送的数据写入Tx FIFO */
wr_regb(port, S3C2410_UTXH, xmit->buf[xmit->tail]);
/* 移向循环缓冲中下一要发送的数据 */
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
port->icount.tx++;
}
/* 如果环形缓冲区中剩余的字符少于WAKEUP_CHARS,唤醒上层 */
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(port);
/* 如果环形缓冲为空,则停止发送 */
if (uart_circ_empty(xmit))
gprs_uart_stop_tx(port);
out:
return IRQ_HANDLED;
}
/* 启动串口端口,在打开该驱动的设备文件时会调用该函数来申请串口中断,并设置串口为可接受,也可发送 */
static int gprs_uart_startup(struct uart_port *port)
{
unsigned long flags;
int ret;
const char *portname = to_platform_device(port->dev)->name;
/* 设置串口为不可接受,也不可发送 */
rx_enabled(port) = 0;
tx_enabled(port) = 0;
spin_lock_irqsave(&port->lock, flags);
/* 申请接收中断 */
ret = request_irq(RX_IRQ(port), gprs_uart_rx_chars, 0, portname, port);
if (ret != 0)
{
printk(KERN_ERR "cannot get irq %d\n", RX_IRQ(port));
return ret;
}
/* 设置串口为允许接收 */
rx_enabled(port) = 1;
/* 申请发送中断 */
ret = request_irq(TX_IRQ(port), gprs_uart_tx_chars, 0, portname, port);
if (ret)
{
printk(KERN_ERR "cannot get irq %d\n", TX_IRQ(port));
rx_enabled(port) = 0;
free_irq(RX_IRQ(port), port);
goto err;
}
/* 设置串口为允许发送 */
tx_enabled(port) = 1;
err:
spin_unlock_irqrestore(&port->lock, flags);
return ret;
}
/* 关闭串口,在关闭驱动的设备文件时会调用该函数,释放串口中断 */
static void gprs_uart_shutdown(struct uart_port *port)
{
rx_enabled(port) = 0; /* 设置串口为不允许接收 */
free_irq(RX_IRQ(port), port); /* 释放接收中断 */
tx_enabled(port) = 0; /* 设置串口为不允许发送 */
free_irq(TX_IRQ(port), port); /* 释放发送中断 */
}
/* 设置串口参数 */
static void gprs_uart_set_termios(struct uart_port *port,
struct ktermios *termios,
struct ktermios *old)
{
unsigned long flags;
unsigned int baud, quot;
unsigned int ulcon, ufcon = 0;
/* 不支持moden控制信号线
* HUPCL: 关闭时挂断moden
* CMSPAR: mark or space (stick) parity
* CLOCAL: 忽略任何moden控制线
*/
termios->c_cflag &= ~(HUPCL | CMSPAR);
termios->c_cflag |= CLOCAL;
/* 获取用户设置的串口波特率,并计算分频数(串口波特率除数quot) */
baud = uart_get_baud_rate(port, termios, old, 0, 115200*8);
if (baud == 38400 && (port->flags & UPF_SPD_MASK) == UPF_SPD_CUST)
quot = port->custom_divisor;
else
quot = port->uartclk / baud / 16 - 1;
/* 设置数据字长 */
switch (termios->c_cflag & CSIZE)
{
case CS5:
ulcon = S3C2410_LCON_CS5;
break;
case CS6:
ulcon = S3C2410_LCON_CS6;
break;
case CS7:
ulcon = S3C2410_LCON_CS7;
break;
case CS8:
default:
ulcon = S3C2410_LCON_CS8;
break;
}
/* 是否要求设置两个停止位(CSTOPB) */
if (termios->c_cflag & CSTOPB)
ulcon |= S3C2410_LCON_STOPB;
/* 是否使用奇偶检验 */
if (termios->c_cflag & PARENB)
{
if (termios->c_cflag & PARODD) /* 奇校验 */
ulcon |= S3C2410_LCON_PODD;
else /* 偶校验 */
ulcon |= S3C2410_LCON_PEVEN;
}
else /* 无校验 */
{
ulcon |= S3C2410_LCON_PNONE;
}
if (port->fifosize > 1)
ufcon |= S3C2410_UFCON_FIFOMODE | S3C2410_UFCON_RXTRIG8;
spin_lock_irqsave(&port->lock, flags);
/* 设置FIFO控制寄存器、线控制寄存器和波特率除数寄存器 */
wr_regl(port, S3C2410_UFCON, ufcon);
wr_regl(port, S3C2410_ULCON, ulcon);
wr_regl(port, S3C2410_UBRDIV, quot);
/* 更新串口FIFO的超时时限 */
uart_update_timeout(port, termios->c_cflag, baud);
/* 设置我们感兴趣的Rx error */
port->read_status_mask = S3C2410_UERSTAT_OVERRUN;
if (termios->c_iflag & INPCK)
port->read_status_mask |= S3C2410_UERSTAT_FRAME | S3C2410_UERSTAT_PARITY;
/* 设置我们忽略的Rx error */
port->ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
port->ignore_status_mask |= S3C2410_UERSTAT_OVERRUN;
if (termios->c_iflag & IGNBRK && termios->c_iflag & IGNPAR)
port->ignore_status_mask |= S3C2410_UERSTAT_FRAME;
/* 若未设置CREAD(使用接收器),则忽略所有Rx error*/
if ((termios->c_cflag & CREAD) == 0)
port->ignore_status_mask |= RXSTAT_DUMMY_READ;
spin_unlock_irqrestore(&port->lock, flags);
}
/* 获取串口类型 */
static const char *gprs_uart_type(struct uart_port *port)
{/* 返回描述串口类型的字符串指针 */
return port->type == PORT_S3C2410 ? “gprs_uart:s3c2410_uart2” : NULL;
}
/* 申请串口一些必要的资源,如IO端口/IO内存资源,必要时还可以重新映射串口端口 */
static int gprs_uart_request_port(struct uart_port *port)
{
struct resource *res;
const char *name = to_platform_device(port->dev)->name;
/* request_mem_region请求分配IO内存,从开始port->mapbase,大小MAP_SIZE
* port->mapbase保存当前串口的寄存器基地址(物理)
* uart2: 0x50008000
*/
res = request_mem_region(port->mapbase, MAP_SIZE, name);
if (res == NULL)
{
printk(KERN_ERR"request_mem_region error: %p\n", res);
return -EBUSY;
}
return 0;
}
/* 释放串口已申请的IO端口/IO内存资源,必要时还需iounmap */
static void gprs_uart_release_port(struct uart_port *port)
{
/* 释放已分配IO内存 */
release_mem_region(port->mapbase, MAP_SIZE);
}
/* 执行串口所需的自动配置 */
static void gprs_uart_config_port(struct uart_port *port, int flags)
{
int retval;
/* 请求串口 */
retval = gprs_uart_request_port(port);
/* 设置串口类型 */
if (flags & UART_CONFIG_TYPE && retval == 0)
port->type = PORT_S3C2410;
}
/* The UART operations structure */
static struct uart_ops gprs_uart_ops = {
.start_tx = gprs_uart_start_tx, /* Start transmitting */
.stop_tx = gprs_uart_stop_tx, /* Stop transmission */
.stop_rx = gprs_uart_stop_rx, /* Stop reception */
.enable_ms = gprs_uart_enable_ms, /* Enable modem status signals */
.tx_empty = gprs_uart_tx_empty, /* Transmitter busy? */
.get_mctrl = gprs_uart_get_mctrl, /* Get modem control */
.set_mctrl = gprs_uart_set_mctrl, /* Set modem control */
.break_ctl = gprs_uart_break_ctl, /* Set break signal */
.startup = gprs_uart_startup, /* App opens GPRS_UART */
.shutdown = gprs_uart_shutdown, /* App closes GPRS_UART */
.set_termios = gprs_uart_set_termios, /* Set termios */
.type = gprs_uart_type, /* Get UART type */
.request_port = gprs_uart_request_port, /* Claim resources associated with a GPRS_UART port */
.release_port = gprs_uart_release_port, /* Release resources associated with a GPRS_UART port */
.config_port = gprs_uart_config_port, /* Configure when driver adds a GPRS_UART port */
};
/* Uart driver for GPRS_UART */
static struct uart_driver gprs_uart_driver = {
.owner = THIS_MODULE, /* Owner */
.driver_name = DEV_NAME, /* Driver name */
.dev_name = DEV_NAME, /* Device node name */
.major = GPRS_UART_MAJOR, /* Major number */
.minor = GPRS_UART_MINOR, /* Minor number start */
.nr = 1, /* Number of UART ports */
};
/* Uart port for GPRS_UART port */
static struct uart_port gprs_uart_port = {
.irq = IRQ_S3CUART_RX2, /* IRQ */
.fifosize = GPRS_UART_FIFO_SIZE, /* Size of the FIFO */
.iotype = UPIO_MEM, /* IO memory */
.flags = UPF_BOOT_AUTOCONF, /* UART port flag */
.ops = &gprs_uart_ops, /* UART operations */
.line = 0, /* UART port number */
.lock = __SPIN_LOCK_UNLOCKED(gprs_uart_port.lock),
};
/* 初始化指定串口端口 */
static int gprs_uart_init_port(struct uart_port *port, struct platform_device *platdev)
{
unsigned long flags;
unsigned int gphcon;
if (platdev == NULL)
return -ENODEV;
port->dev = &platdev->dev;
/* 设置串口波特率时钟频率 */
port->uartclk = clk_get_rate(clk_get(&platdev->dev, "pclk"));
/* 设置串口的寄存器基地址(物理): 0x50008000 */
port->mapbase = S3C2410_PA_UART2;
/* 设置当前串口的寄存器基地址(虚拟): 0xF5008000 */
port->membase = S3C24XX_VA_UART + (S3C2410_PA_UART2 - S3C24XX_PA_UART);
spin_lock_irqsave(&port->lock, flags);
wr_regl(port, S3C2410_UCON, S3C2410_UCON_DEFAULT);
wr_regl(port, S3C2410_ULCON, S3C2410_LCON_CS8 | S3C2410_LCON_PNONE);
wr_regl(port, S3C2410_UFCON, S3C2410_UFCON_FIFOMODE
| S3C2410_UFCON_RXTRIG8 | S3C2410_UFCON_RESETBOTH);
/* 将I/O port H的gph6和gph7设置为TXD2和RXD2 */
gphcon = readl(S3C2410_GPHCON);
gphcon &= ~((0x5) << 12);
writel(gphcon, S3C2410_GPHCON);
spin_unlock_irqrestore(&port->lock, flags);
return 0;
}
/* Platform driver probe */
static int __init gprs_uart_probe(struct platform_device *dev)
{
int ret;
/* 初始化串口 */
ret = gprs_uart_init_port(&gprs_uart_port, dev);
if (ret < 0)
{
printk(KERN_ERR"gprs_uart_probe: gprs_uart_init_port error: %d\n", ret);
return ret;
}
/* 添加串口 */
ret = uart_add_one_port(&gprs_uart_driver, &gprs_uart_port);
if (ret < 0)
{
printk(KERN_ERR"gprs_uart_probe: uart_add_one_port error: %d\n", ret);
return ret;
}
/* 将串口uart_port结构体保存在platform_device->dev->driver_data中 */
platform_set_drvdata(dev, &gprs_uart_port);
return 0;
}
/* Called when the platform driver is unregistered */
static int gprs_uart_remove(struct platform_device *dev)
{
platform_set_drvdata(dev, NULL);
/* 移除串口 */
uart_remove_one_port(&gprs_uart_driver, &gprs_uart_port);
return 0;
}
/* Suspend power management event */
static int gprs_uart_suspend(struct platform_device *dev, pm_message_t state)
{
uart_suspend_port(&gprs_uart_driver, &gprs_uart_port);
return 0;
}
/* Resume after a previous suspend */
static int gprs_uart_resume(struct platform_device *dev)
{
uart_resume_port(&gprs_uart_driver, &gprs_uart_port);
return 0;
}
/* Platform driver for GPRS_UART */
static struct platform_driver gprs_plat_driver = {
.probe = gprs_uart_probe, /* Probe method */
.remove = __exit_p(gprs_uart_remove), /* Detach method */
.suspend = gprs_uart_suspend, /* Power suspend */
.resume = gprs_uart_resume, /* Resume after a suspend */
.driver = {
.owner = THIS_MODULE,
.name = DEV_NAME, /* Driver name */
},
};
/* Platform device for GPRS_UART */
struct platform_device *gprs_plat_device;
static int __init gprs_init_module(void)
{
int retval;
/* Register uart_driver for GPRS_UART */
retval = uart_register_driver(&gprs_uart_driver);
if (0 != retval)
{
printk(KERN_ERR "gprs_init_module: can‘t register the GPRS_UART driver %d\n", retval);
return retval;
}
/* Register platform device for GPRS_UART. Usually called
during architecture-specific setup */
gprs_plat_device = platform_device_register_simple(DEV_NAME, 0, NULL, 0);
if (IS_ERR(gprs_plat_device))
{
retval = PTR_ERR(gprs_plat_device);
printk(KERN_ERR "gprs_init_module: can‘t register platform device %d\n", retval);
goto fail_reg_plat_dev;
}
/* Announce a matching driver for the platform
devices registered above */
retval = platform_driver_register(&gprs_plat_driver);
if (0 != retval)
{
printk(KERN_ERR printk(KERN_ERR "gprs_init_module: can‘t register platform driver %d\n", retval);
goto fail_reg_plat_drv;
}
return 0; /* succeed */
fail_reg_plat_drv:
platform_device_unregister(gprs_plat_device);
fail_reg_plat_dev:
uart_unregister_driver(&gprs_uart_driver);
return retval;
}
static void __exit gprs_exit_module(void)
{
/* The order of unregistration is important. Unregistering the
UART driver before the platform driver will crash the system */
/* Unregister the platform driver */
platform_driver_unregister(&gprs_plat_driver);
/* Unregister the platform devices */
platform_device_unregister(gprs_plat_device);
/* Unregister the GPRS_UART driver */
uart_unregister_driver(&gprs_uart_driver);
}
module_init(gprs_init_module);
module_exit(gprs_exit_module);
MODULE_AUTHOR(“lingd”);
MODULE_LICENSE(“Dual BSD/GPL”);
标签:linux-uart
原文地址:http://blog.csdn.net/chenliang0224/article/details/43835601