标签:
要添最少的挡板使所有的‘D‘不存在到达网格外的路径.
以每个格子向四个方向中可以到达的格子连容量为1的边, 从源点向所有‘D‘ 连容量为4的边,网格外的点向汇点连一条容量为4的边.
答案就是这个容量网络的最小割,即最大流.
/* 最大流SAP 邻接表 思路:基本源于FF方法,给每个顶点设定层次标号,和允许弧。 优化: 1、当前弧优化(重要)。 1、每找到以条增广路回退到断点(常数优化)。 2、层次出现断层,无法得到新流(重要)。 时间复杂度(m*n^2) */ #include <iostream> #include <cstdio> #include <cstring> #include <utility> #include <vector> #define ms(a,b) memset(a,b,sizeof a) using namespace std; const int INF = 6111; struct node { int v, c, next; } edge[100000]; int pHead[100000], SS, ST, nCnt; int n, m; int g[200][200]; int dx[] = {0, 1, 0, -1}, dy[] = {1, 0, -1, 0}; //同时添加弧和反向边, 反向边初始容量为0 void addEdge (int u, int v, int c) { edge[++nCnt].v = v; edge[nCnt].c = c, edge[nCnt].next = pHead[u]; pHead[u] = nCnt; edge[++nCnt].v = u; edge[nCnt].c = 0, edge[nCnt].next = pHead[v]; pHead[v] = nCnt; } inline int SAP (int pStart, int pEnd, int N) { //层次点的数量 点的层次 点的允许弧 当前走过边的栈 int numh[INF], h[INF], curEdge[INF], pre[INF]; //当前找到的流, 累计的流量, 当前点, 断点, 中间变量 int cur_flow, flow_ans = 0, u, neck, i, tmp; //清空层次数组, ms (h, 0); ms (numh, 0); ms (pre, -1); //将允许弧设为邻接表的任意一条边 for (i = 0; i <= N; i++) curEdge[i] = pHead[i]; numh[0] = N;//初始全部点的层次为0 u = pStart;//从源点开始 //如果从源点能找到增广路 while (h[pStart] <= N) { //找到增广路 if (u == pEnd) { cur_flow = 1e9; //找到当前增广路中的最大流量, 更新断点 for (i = pStart; i != pEnd; i = edge[curEdge[i]].v) if (cur_flow > edge[curEdge[i]].c) neck = i, cur_flow = edge[curEdge[i]].c; //增加反向边的容量 for (i = pStart; i != pEnd; i = edge[curEdge[i]].v) { tmp = curEdge[i]; edge[tmp].c -= cur_flow, edge[tmp ^ 1].c += cur_flow; } flow_ans += cur_flow;//累计流量 u = neck;//从断点开始找新的增广路 } //找到一条允许弧 for ( i = curEdge[u]; i != 0; i = edge[i].next) if (edge[i].c && h[u] == h[edge[i].v] + 1) break; //继续DFS if (i != 0) { curEdge[u] = i, pre[edge[i].v] = u; u = edge[i].v; } //当前起点没有允许弧,从u找不到增广路 else { //u所在的层次点减少一,且如果没有与当前点一个层次的点, 退出. if (0 == --numh[h[u]]) continue; //有与u相同层次的点, 更新u的层次 ,回到上一个点 curEdge[u] = pHead[u]; for (tmp = N, i = pHead[u]; i != 0; i = edge[i].next) if (edge[i].c) tmp = min (tmp, h[edge[i].v]); h[u] = tmp + 1; ++numh[h[u]]; if (u != pStart) u = pre[u]; } } return flow_ans; } inline void build() { char ch; scanf ("%d %d", &n, &m); ms (g, -1), ms (pHead, 0), nCnt = 1; for (int i = 1; i <= n; i++) { getchar(); for (int j = 1; j <= m; j++) { ch = getchar(); if (ch == ‘.‘) g[i][j] = 0; if (ch == ‘D‘) g[i][j] = 1; } } n += 2, m += 2; SS = n * m, ST = SS + 1; for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { int u = i * m + j; if (i == 0 || i == n - 1 || j == 0 || j == m - 1) { addEdge (u, ST, 4); continue; } if (g[i][j] == 0) { for (int k = 0; k < 4; k++) { int x = i + dx[k], y = j + dy[k]; int v = m * x + y; if (g[x][y] != 1) addEdge (u, v, 1); } } if (g[i][j] == 1) { addEdge (SS, u, 4); for (int k = 0; k < 4; k++) { int x = i + dx[k], y = j + dy[k]; int v = m * x + y; if (g[x][y] != 1 ) addEdge (u, v, 1); } } } } } int cs; int main() { /* 建图,前向星存边,表头在pHead[],边计数 nCnt. SS,ST分别为源点和汇点 */ scanf ("%d", &cs); while (cs--) { build(); printf ("%d\n", SAP (SS, ST, n * m + 1) ); } return 0; }
标签:
原文地址:http://www.cnblogs.com/keam37/p/4293602.html