码迷,mamicode.com
首页 > 其他好文 > 详细

LeetcodeOJ: Triangle 动态规划

时间:2015-02-18 17:35:55      阅读:202      评论:0      收藏:0      [点我收藏+]

标签:

Total Accepted: 31557 Total Submissions: 116793

 
 

Given a triangle, find the minimum path sum from top to bottom.

Each step you may move to adjacent numbers on the row below.

[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space,

where n is the total number of rows in the triangle.

简单的动态规划

 1 import sys
 2 
 3 class Solution:
 4     # @param triangle, a list of lists of integers
 5     # @return an integer
 6     def minimumTotal(self, triangle):
 7         length = len(triangle)
 8         l = [0]
 9         l.extend([ sys.maxint for x in range(length - 1)])
10         def getLastSum(y, x):
11             return l[x] if x in range(y+1) else sys.maxint
12         for y in range(length):
13             for x in range(y, -1, -1):
14                 l[x] = triangle[y][x] + min(getLastSum(y, x), getLastSum(y, x - 1))
15         return min(l)

 

LeetcodeOJ: Triangle 动态规划

标签:

原文地址:http://www.cnblogs.com/ydlme/p/4295830.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!