标签:
Total Accepted: 31557 Total Submissions: 116793
Given a triangle, find the minimum path sum from top to bottom.
Each step you may move to adjacent numbers on the row below.
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space,
where n is the total number of rows in the triangle.
简单的动态规划
1 import sys 2 3 class Solution: 4 # @param triangle, a list of lists of integers 5 # @return an integer 6 def minimumTotal(self, triangle): 7 length = len(triangle) 8 l = [0] 9 l.extend([ sys.maxint for x in range(length - 1)]) 10 def getLastSum(y, x): 11 return l[x] if x in range(y+1) else sys.maxint 12 for y in range(length): 13 for x in range(y, -1, -1): 14 l[x] = triangle[y][x] + min(getLastSum(y, x), getLastSum(y, x - 1)) 15 return min(l)
标签:
原文地址:http://www.cnblogs.com/ydlme/p/4295830.html