标签:
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the "black hole" of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we‘ll get:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174 7641 - 1467 = 6174 ... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0, 10000).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation "N - N = 0000". Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089 9810 - 0189 = 9621 9621 - 1269 = 8352 8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
思路:熟悉运用sscanf ,ssprintf ,另外还有%04d
1 #include <iostream> 2 #include <cstdio> 3 #include <algorithm> 4 using namespace std; 5 bool cmphigh(char A,char B) 6 { 7 return A>B; 8 } 9 bool cmplow(char A,char B) 10 { 11 return A<B; 12 } 13 14 int main(int argc, char *argv[]) 15 { 16 int n; 17 scanf("%d",&n); 18 char high[5],low[5]; 19 int ans=n; 20 bool first=true; 21 while(ans!=6174||first) 22 { 23 first=false; 24 sprintf(high,"%04d",ans); 25 sprintf(low,"%04d",ans); 26 int big,small; 27 sort(high,high+4,cmphigh); 28 sscanf(high,"%d",&big); 29 sort(low,low+4,cmplow); 30 sscanf(low,"%d",&small); 31 ans=big-small; 32 printf("%04d - %04d = %04d\n",big,small,ans); 33 if(ans==0) 34 break; 35 } 36 37 return 0; 38 }
PAT1069. The Black Hole of Numbers
标签:
原文地址:http://www.cnblogs.com/GoFly/p/4296062.html