标签:
题意:一个软件有s个子系统,会产生n种bug。 某人一天发现一个bug,这个bug属于某种bug,发生在某个子系统中。 求找到所有的n种bug,且每个子系统都找到bug,这样所要的天数的期望。属于某种类型的概率是1/n。
这道题目读题我读了好长时间加上又是第一次做概率dp实在是不会。。。。看了别人的
令 f[i][j] 表示已经找到了 i 种 bug,且 j 个子系统至少包含一个 bug,距离完成目标需要的时间的期望。
目标状态是 f[0][0]
再过一天找到一个 bug 可能是如下的情况:
1. 这个 bug 的种类是 已经找到的 并且 出现在 已经找到 bug 的子系统中
2. 这个 bug 的种类是 已经找到的 并且 出现在 没有找到 bug 的子系统中
3. 这个 bug 的种类是 没有找到的 并且 出现在 已经找到 bug 的子系统中
4. 这个 bug 的种类是 没有找到的 并且 出现在 没有找到 bug 的子系统中
经过简单的分析,不难得出如下递推过程:
f[i][j] = i/n*j/s*f[i][j]
+ i/n*(s-j)/s*f[i][j+1]
+ (n-i)/n*j/s*f[i+1][j]
+ (n-i)/n*(s-j)/s*f[i+1][j+1]
移项可得
(1-(i*j)/(n*s))f[i][j] = i/n*(s-j)/s*f[i][j+1]
+ (n-i)/n*j/s*f[i+1][j]
+ (n-i)/n*(s-j)/s*f[i+1][j+1]
说一下自己的感悟吧,为什么要这样转换上面没换的就是错的呢?,因为如果不转换那么这次的是家了上次的里面的数量,为什么要+1,是因为这一分钟一定在这所以加上概率一具体解释可以看---->>>点击打开链接令 f[i][j] 表示已经找到了 i 种 bug,且 j 个子系统至少包含一个 bug,距离完成目标需要的时间的期望。
目标状态是 f[0][0]
再过一天找到一个 bug 可能是如下的情况:
1. 这个 bug 的种类是 已经找到的 并且 出现在 已经找到 bug 的子系统中
2. 这个 bug 的种类是 已经找到的 并且 出现在 没有找到 bug 的子系统中
3. 这个 bug 的种类是 没有找到的 并且 出现在 已经找到 bug 的子系统中
4. 这个 bug 的种类是 没有找到的 并且 出现在 没有找到 bug 的子系统中
经过简单的分析,不难得出如下递推过程:
f[i][j] = i/n*j/s*f[i][j]
+ i/n*(s-j)/s*f[i][j+1]
+ (n-i)/n*j/s*f[i+1][j]
+ (n-i)/n*(s-j)/s*f[i+1][j+1]
移项可得
(1-(i*j)/(n*s))f[i][j] = i/n*(s-j)/s*f[i][j+1]
+ (n-i)/n*j/s*f[i+1][j]
+ (n-i)/n*(s-j)/s*f[i+1][j+1]
Description
Input
Output
Sample Input
1 2
Sample Output
3.0000
Source
#include<cstdio> #include<iostream> #include<algorithm> #include<cstring> using namespace std; double dp[1005][1005]; int main() { int n,m; while(~scanf("%d %d",&n,&m)) { dp[n][m]=0; for(int i=n; i>=0; i--) for(int j=m; j>=0; j--) { if(i==n&&j==m) continue; dp[i][j]=1.0*(n-i)*(m-j)/n/m*dp[i+1][j+1]+1.0*(n-i)*j/(n*m)*dp[i+1][j]+1.0*i*(m-j)/(n*m)*dp[i][j+1]+1; dp[i][j]/=(1.0-1.0*i*j/n/m); } printf("%.4lf\n",dp[0][0]); } return 0; }
令 f[i][j] 表示已经找到了 i 种 bug,且 j 个子系统至少包含一个 bug,距离完成目标需要的时间的期望。
目标状态是 f[0][0]
再过一天找到一个 bug 可能是如下的情况:
1. 这个 bug 的种类是 已经找到的 并且 出现在 已经找到 bug 的子系统中
2. 这个 bug 的种类是 已经找到的 并且 出现在 没有找到 bug 的子系统中
3. 这个 bug 的种类是 没有找到的 并且 出现在 已经找到 bug 的子系统中
4. 这个 bug 的种类是 没有找到的 并且 出现在 没有找到 bug 的子系统中
经过简单的分析,不难得出如下递推过程:
f[i][j] = i/n*j/s*f[i][j]
+ i/n*(s-j)/s*f[i][j+1]
+ (n-i)/n*j/s*f[i+1][j]
+ (n-i)/n*(s-j)/s*f[i+1][j+1]
移项可得
(1-(i*j)/(n*s))f[i][j] = i/n*(s-j)/s*f[i][j+1]
+ (n-i)/n*j/s*f[i+1][j]
+ (n-i)/n*(s-j)/s*f[i+1][j+1]
标签:
原文地址:http://blog.csdn.net/wweiainn/article/details/43886465